

115 East Marlin, Suite 108, McPherson, KS 67460 (620) 241-6090; www.geostatenvironmental.com

November 25, 2014

Akhter Hossain, PE
Engineering Associate
Kansas Department of Health and Environment
Bureau of Waste Management
Hazardous Waste Permits Section
Curtis State Office Building
1000 SW Jackson, Suite 320
Topeka, KS 66612-1366

RE: Submittal & Certification of Building C Rinsate Sample Results, Clean Harbors Facility Wichita, Kansas

Dear Mr. Hossain;

In conjunction with and on behalf of Clean Harbors (CH), GeoStat Environmental, LLC (GeoStat), iSi Environmental (iSi), and Cameron-Cole (C C) are cooperatively providing the attached submittal of analytical results in support of RCRA closure activities at Clean Harbor's Wichita, Kansas facility (the Site). The intent of this transmittal is to provide analytical results to KDHE and USEPA to determine the suitability of these materials for off-site disposal (concrete floor and foundation) and recycling (building walls and ceiling). A stamped and signed certification stating that the rinsate sampling effort(s) were observed and overseen by a Kansas Professional Engineer is also provided. Subsurface soil samples were not observed by the certifying engineer and are therefore not subject to certification.

Initial efforts in Building C were to empty the building of permitted waste prior to any decontamination activity (washing, rinsing, and rinsate sampling). After the west half was empty a plastic sheeting barrier was to separate the building into approximate halves. Decontamination activities were always limited to the empty halves of the building. Closure by halves was required to allow Clean Harbor operations to continue during the remedial efforts at the facility. Building C was the last building that is undergoing closure activities at the Site. Building C is also a very large and long building which remained in active use as other buildings on-site were closed or re-worked (Building J). The two halves of Building C are referred to as the western and eastern halves of the building. Each of these halves were further subdivided into 4 bays for both the west and east halves, for 8 total bays. Bays were numbered from west to east from #1 to #8.

November 25, 2014 Mr. Akhter Hossain, PE Page 2

WESTERN BUILDING HALF

The first portion emptied was the western half of the building; this western half has four (4) secondary containment bays separated by six-inch high concrete curbs. This half of the building was emptied first, divided from the remaining building by the secondary containment concrete berm and temporary plastic sheeting barrier wall. Then each bay was washed, triple rinsed, and rinsate sampled.

Decontamination began with general cleaning and power-washing of Building C on October 6, 2014. Rinsate sampling for all 4 western bays occurred on October 10, 2014. Initial sampling in western half was completed with a single sample to represent the entire bay (ceiling, walls, and floors). Results of the initial sampling of the western half of Building C indicated that concentrations of all COCs within Bays 2, 3 and 4 appeared to be below levels of concern and consistent with previously approved concentrations for other buildings on Site. Bay 1 rinsate results, however, contained higher than expected levels of some metals (including Mercury). Based on those results it was decided to rewash and resample Bay 1. Bay 1 was re-washed and sampled on November 18, 2014, following the initial sampling of the eastern half of the building. The resampling of Bay 1 was separated to provide ceiling and wall (CW) and floor (FL) results.

EASTERN BUILDING HALF

The approximately eastern half of the building has one large secondary containment curb, with two very small secondary containment areas in two corners. For sampling purposes it was decided to subdivide the area into approximately equal 4 bays using the metal building support rafters as dividing boundaries. Plastic sheeting was attached from floor to wall at each of the 3 dividing walls (for 4 divisions or bays). Decontamination began with general cleaning and power-washing of Building C on November 11, 2014. Rinsate sampling for all 4 western bays occurred on November 18, 2014. All eastern bays (Bays 5 to Bay 8) were sampled with metal ceiling and walls, separated from the concrete floors.

DECONTAMINATION AND WASTE DISPOSAL

Waste water and any entrained silts and/or solids generated during the decontamination and rinsing of the on-site buildings and tanks has been contained in a large frac tank on-site (Tank No. SV 34730L). Waste water generated during decontamination activities at the Site is being transported off-site for disposal at an appropriate Clean Harbor's facility - for incineration, once a sufficient volume of rinse water has been generated. In the case Building C several drums worth of solids were removed from building walls and ceiling that was a very old (and loose) spray foam insulation. Some insulation was removed dry, but all remaining insulation was removed by the power washing process. These solids were collected and have been included with the bulk soil shipments to Clean Harbor's Lone Mountain facility.

Washing, triple rinsing, and rinsate sampling within Building C started with the ceilings, then walls, and finally the floors. Procedures, methods, and the equipment used were selected to match those used most successfully during the previous decontamination. The initial results for the Building C rinsate sampling demonstrated no exceedances for volatile organics and usually

November 25, 2014 Mr. Akhter Hossain, PE Page 3

lower levels of common metals and mineral compounds. The exception was Bay 1 which in the initial sample exhibited some higher levels of metals including detected levels of Mercury.

Two Building C (west half and east half) rinsate dioxin / furan composite samples were also analyzed, with favorable results received, with no high levels detected or exceedances noted. Each composite dioxin / furan sample represented half of the whole building (ceiling, walls, and floors), effectively screening all the insides of Building C with the two samples.

CEILINGS AND WALLS

Based upon these results, Clean Harbors believes that the above grade building materials from Building C, including the Metal Building Canopy (Ceiling and Walls) are suitable for common metals re-cycling. There is no porous building debris, or other C&D (windows, wood walls, roof decking materials, etc) or any other materials requiring other off-site disposal from the upper structure of Building C.

CONCRETE FLOORING

RFI activities (uncertified soil sampling activities) have already identified soil concentrations exceeding interim action objectives in soil immediately beneath the floor throughout almost all of Building C. Due the lack of significant clean concrete to possibly save and also due to schedule constraints, all of Building C's concrete flooring will all be removed for disposal as hazardous waste. Building C concrete will be crushed to a suitable size on-site, with the crushed concrete then loaded and shipped to Clean Harbor's Lone Mountain facility during and after the demolition of the building.

Building C's entire concrete flooring will be removed and disposed of as hazardous waste. Therefore there will be no delineation of concrete floor slabs and therefore no under-slab floor sampling. Therefore, mapping of Building C RFI data, specific to under-slab concrete results is not included. The entire concrete flooring and those identified impacted soils (from the RFI data set) will soon to be removed and shipped to Clean Harbor's Lone Mountain facility.

RINSATE SAMPLE CERTIFICATION

Clean Harbors hereby certifies, through the undersigned third party independent Kansas licensed Professional Engineer, that the attached rinsate sampling documentation, mapping, and laboratory analytical results are representative of the areas or surfaces identified therein. Further that these areas or surfaces identified have been effectively cleaned and rinsate sampled in general accordance to the Partial Closure Plan for Buildings B, D and J approved by KDHE/USEPA on October 10, 2013.

I hereby certify under penalty of law that this document and all attachments concerning rinsate results were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and

November 25, 2014 Mr. Akhter Hossain, PE Page 4

belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

The entire Clean Harbor team appreciates the continued joint cooperation of KDHE and USEPA on this project and we look forward to your timely response to this submittal. Please call me at (620) 245-4675, if you have any questions regarding this certification.

Sincerely,

GeoStat Environmental, LLC

Stuart B. Klaus, PE Senior Engineer

SUBMITTAL ATTACHMENTS:

- 1. Spreadsheet of Building C Rinsate Analytical Results
- 2. Crack Survey of Building C (w/ Crack Survey Figure, Description Table, & Photo-log)

cc: Chris Jump, USEPA Martin Smith, Clean Harbors Michael Stephenson, Cameron Cole Brady Gerber, iSi Environmental

SUBMITTAL ATTACHMENTS

ATTACHMENT 1:

Spreadsheet of Building C Bay Rinsate Analytical Results

Including:

- -Sample Location Map
- -Rinsate Activity Tracking Sheet
- -Comparison of Results to KDHE Risk Levels

ATTACHMENT 2:

Crack Survey of Building C

Including:

- -Crack Survey Figure
- -Crack Survey Description Table
- -Orientated Color Photo Log of Cracks

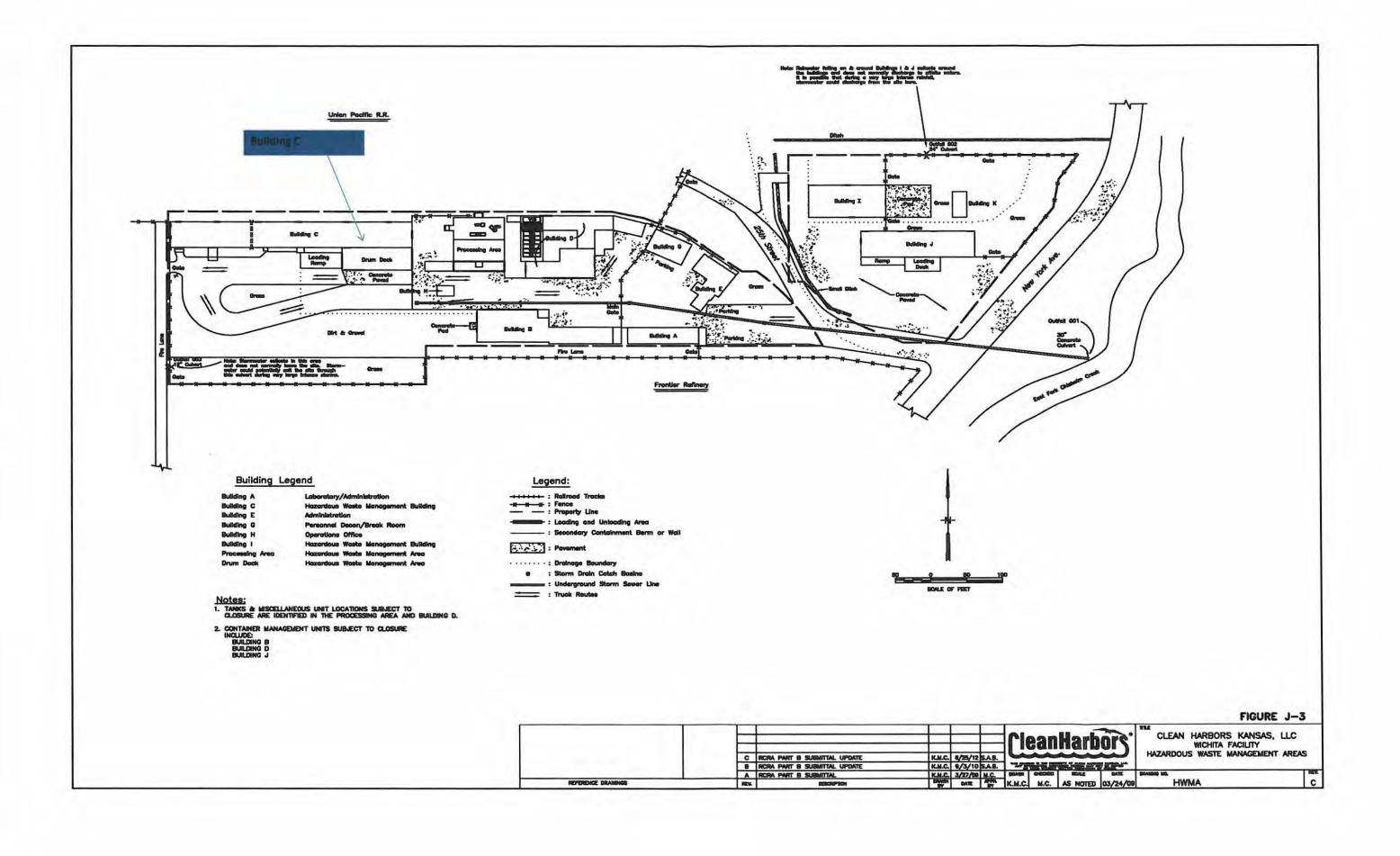
ATTACHMENT 1: Spreadsheet of Building C Bay Rinsate Analytical Results

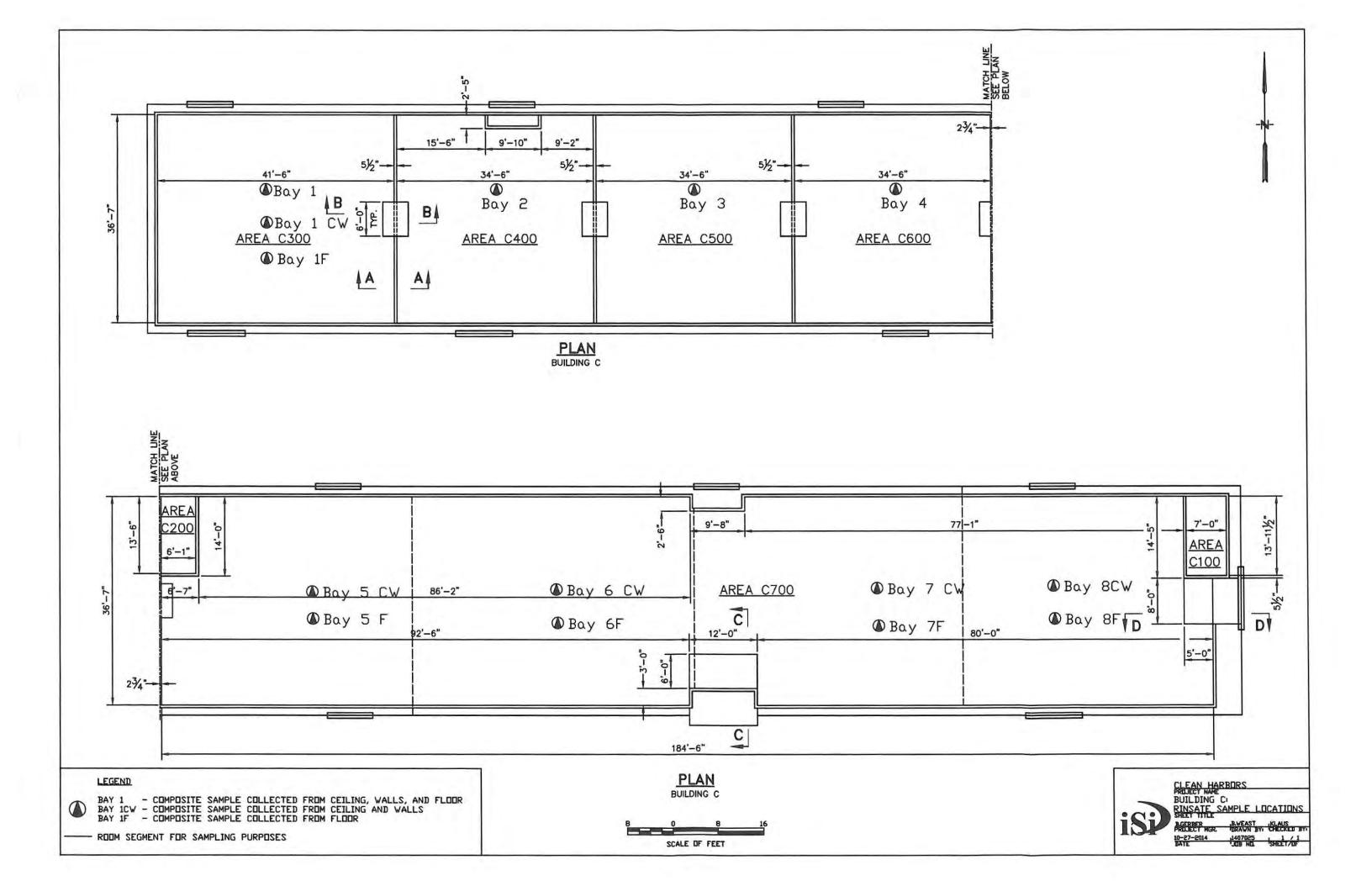
Including:

- -Sample Location Map
- -Rinsate Activity Tracking Sheet
- -Comparison of Results to KDHE Risk Levels

CLEAN HARBORS, WICHITA, KS Analytical Results

	Tab	Description and Comments
	Contents	This listing of the Excel Worksheet Contents.
	Site Map	Drawing Showing Locations of Structures Sampled at the Facility.
	Bld C Figure	Drawing of Building C Showing Sample Locations
	Bld C Decon Summary	Summary of Decontamination and Rinsate Sampling Events
0 C	Bld C Bay 1-4 Table	Table of Bld C Bay 1-4 Analytical Results With Comparison to KDHE Tier II RSK Levels.
ilding	Bld C Bay 1-4 D&F Table	Table of Bld C Bay 1-4 Dioxin/Furan Analytical Results With Comparison to KDHE Tier II RSK Levels.
	Bld C Bay 1 Resample Table	Table of Bld C Bay 1 Analytical Results With Comparison to KDHE Tier II RSK Levels


Table of Bld C Bay 5-8 Analytical Results with Comparison to KDHE Tier II RSK Levels


Table of Bld C Bay 5-8 Dioxin/Furan Analytical Results With Comparison to KDHE Tier II RSK Levels.

Notes: D&F = Dioxin & Furan

Bld C Bay 5-8 Table

Bld C Bay 5-8 D&F Table

Clean Harbors Wichita Building C Decontamination Summary

Unit	Comments	Inventory	Decontamination Complete (date)	Rinsate Samples Collected (PE Required) (date)	Internal Review	Follow up Actions	Submitted to State/EPA (date)	Determination	Agency Determination Via? (phone, email etc.)	Date
	Concrete floor to be disposed of	None	10/06/14 to 10/10/14	10/10/2014	Metal exceedances	Repeat Decon				
Bay 1	at Lone Mountain Landfill due to impacted soil underlying. Floor and ceiling/wall rinsate	None	11/18/14 to 11/18/14	11/18/2014	Metals pass	Submit Results				
	sample collected 11/18/14.									
Bay 2	Concrete floor to be disposed of at Lone Mountain Landfill due to impacted soil underlying.	None	10/06/14 to 10/10/14	10/10/2014	Organics pass	Submit Results				
Bay 3	Concrete floor to be disposed of at Lone Mountain Landfill due to impacted soil underlying.	None	10/06/14 to 10/10/14	10/10/2014	Organics pass	Submit Results				
Bay 4	Concrete floor to be disposed of at Lone Mountain Landfill due to impacted soil underlying.	None	10/06/14 to 10/10/14	10/10/2014	Organics pass	Submit Results				
Bay 5	Concrete floor to be disposed of at Lone Mountain Landfill due to impacted soil underlying.	None	11/11/14 to 11/18/14	11/18/2014	Organics pass	Submit Results				
Bay 6	Concrete floor to be disposed of at Lone Mountain Landfill due to impacted soil underlying.	None	11/11/14 to 11/18/14	11/18/2014	Organics pass	Submit Results				
Bay 7	Concrete floor to be disposed of at Lone Mountain Landfill due to impacted soil underlying.	None	11/11/14 to 11/18/14	11/18/2014	Organics pass	Submit Results				****
Вау 8	Concrete floor to be disposed of at Lone Mountain Landfill due to impacted soil underlying.	None	11/11/14 to 11/18/14	11/18/2014	Organics pass	Submit Results				

Inventory - List all items removed from unit and provide reference to location where they were moved (e.g. manifest number, tank number for rinse water, etc.). Use separate sheet if necessary.

Job Number:	601800	084											
Account:	ISI Env	rironmental Services											
Project:	Clean Harbors; Wichita, KS												
Project Number:													
					Legend:	Detection	Exceed						
Client Sample ID:		KS Tier 2 Risk Based Standards	BLD C BAY 1	BLD C BAY 2	BLD C BAY 3	BLD C BAY 4	TRIP BLANK						
Lab Sample ID:		Residential	60180084004	60180084003	60180084002	60180084001	60180084006						
Date Sampled:		GW (KDHE	10/10/2014	10/10/2014	10/10/2014	10/10/2014	10/10/2014						
Matrix:		03/2014)	Water	Water	Water	Water	Water						
GC/MS Volatiles (SW846 8260B)													
No. atomic	1n	11500	ND (25.0)	ND (25.0)	ND (25.0)	ND (25.0)	I ND (25 O						
Acetone	ug/l	0.0415	ND (20.0)	ND (25.0) ND (20.0)	ND (25.0) ND (20.0)	ND (25.0) ND (20.0)	ND (25.0) ND (20.0)						
Acrolein	ug/l ug/l	0.0413	ND (10.0)	ND (20.0)	ND (20.0)	ND (10.0)	ND (20.0)						
Acrylonitrile Benzene	ug/l	5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (10.0)						
Bromobenzene	ug/l	-	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
Bromochloromethane	ug/l		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
Bromodichloromethane	ug/l	80	1.7	1.1	ND (1.0)	2.3	ND (1.0)						
Bromoform	ug/l	80	ND (1.0)	ND (1.0)	ND (1.0)	1.1	ND (1.0)						
Bromomethane	ug/l	7.02	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
2-Butanone (MEK)	ug/l	4920	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)						
-Butylbenzene	ug/l	169	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
ec-Butylbenzene	ug/l	30.5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
ert-Butylbenzene	ug/l		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
Carbon disulfide	ug/l	716	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Carbon tetrachloride	ug/l	5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
Chlorobenzene	ug/l	100	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
Chloroethane	ug/l	14000	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
Chloroform	ug/l	80	11	ND (1.0)	ND (1.0)	1.9	ND (1.0)						
Chloromethane	ug/l	127	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
-Chlorotoluene	ug/l	88.9	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
-Chlorotoluene	ug/l	-	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
,1-Dichloroethane	ug/l	25	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
,1-Dichloroethene	ug/l	7	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
1,1-Dichloropropene	ug/l		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						

PACE ANALYTICAL

Job Number: 60180084

Account: ISI Environmental Services

Project: Clean Harbors; Wichita, KS

Project Number:

Legend: Delection Exceed

Client Sample ID:		KS Tier 2 Risk Based Standards	BLD C BAY 1	BLD C BAY 2	BLD C BAY 3	BLD C BAY 4	TRIP BLANK
Lab Sample ID:		Residential	60180084004	60180084003	60180084002	60180084001	60180084006
Date Sampled:		GW (KDHE	10/10/2014	10/10/2014	10/10/2014	10/10/2014	10/10/2014
Matrix:		03/2014)	Water	Water	Water	Water	Water
1,2-Dibromo-3-chloropropane	ug/l	0.20	ND (2.0)				
1,2-Dibromoethane (EDB)	ug/l	0.05	ND (1.0)				
1,2-Dichloroethane	ug/l	5	ND (1.0)				
1,2-Dichloropropane	ug/l	5	ND (1.0)				
1,3-Dichloropropane	ug/l	-	ND (1.0)				
2,2-Dichloropropane	ug/l		ND (1.0)				
1,4 Dioxane (p-Dioxane)	ug/l	77.20	ND (100)				
Dibromomethane	ug/l	-	ND (2.0)				
Dibromochloromethane	ug/l	80	2.2	1.5	ND (1.0)	3.3	ND (1.0)
Dichlorodifluoromethane	ug/l	366	ND (2.0)				
cis-1,2-Dichloroethene	ug/l	70	ND (1.0)				
cis-1,3-Dichloropropene	ug/l		ND (1.0)				
1,2-Dichlorobenzene	ug/l	600	ND (1.0)				
1,3-Dichlorobenzene	ug/l	-	ND (1.0)				
1,4-Dichlorobenzene	ug/l	75	ND (1.0)				
trans-1,2-Dichloroethene	ug/l	100	ND (1.0)				
trans-1,3-Dichloropropene	ug/l		ND (1.0)				
Ethylbenzene	ug/l	700	ND (1.0)				
2-Hexanone	ug/l	()	ND (10.0)				
Hexachloro-1,3-butadiene	ug/l	6.32	ND (2.0)				
Isopropylbenzene	ug/l	451	ND (1.0)				
p-Isopropyltoluene	ug/l		ND (1.0)				
4-Methyl-2-pentanone	ug/l	1020	ND (5.0)				
Methylene chloride	ug/l	5	ND (5.0)				
Methyl Tert Butyl Ether	ug/l	133	ND (1.0)				
Naphthalene	ug/l	1.11	ND (5.0)				
n-Propylbenzene	ug/l	660	ND (1.0)				

PACE ANALYTICAL 60180084 Job Number: Account: ISI Environmental Services Project: Clean Harbors; Wichita, KS Project Number: Exceed Legend: Detection KS Tier 2 Risk BLD C BAY 1 BLD C BAY 2 BLD C BAY 3 TRIP BLANK Client Sample ID: BLD C BAY 4 **Based Standards** Lab Sample ID: Residential 60180084004 60180084003 60180084002 60180084001 60180084006 GW (KDHE 10/10/2014 10/10/2014 Date Sampled: 10/10/2014 10/10/2014 10/10/2014 03/2014) Water Water Water Water Matrix: Water 100 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) Styrene ug/l 5.35 ND (1.0) ND (1.0) ND (1.0) 1,1,1,2-Tetrachloroethane ug/l ND (1.0) ND (1.0) 1,1,1-Trichloroethane ug/l 200 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 0.694 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 1.1.2.2-Tetrachloroethane ug/l ND (1.0) 5 ND (1.0) ND (1.0) ND (1.0) ND (1.0) 1,1,2-Trichloroethane ug/l 1,2,3-Trichlorobenzene ug/l ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 0.00468 ND (2.0) ND (2.0) ND (2.0) ND (2.0) ND (2.0) 1,2,3-Trichloropropane ug/l 1,2,4-Trichlorobenzene ug/l 70 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 8.44 ND (2.0) ND (2.0) ND (2.0) ND (2.0) ND (2.0) 1,2,4-Trimethylbenzene ug/l 1.3.5-Trimethylbenzene ug/l 44 ND (2.0) ND (2.0) ND (2.0) ND (2.0) ND (2.0) Tetrachloroethylene ug/l 5 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 1000 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ug/l Toluene 5 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) Trichloroethene ug/l ND (2.0) ND (2.0) ND (2.0) ND (2.0) Trichlorofluoromethane ug/l 1090 ND (2.0) ug/l 2 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) Vinvl chloride 406 ND (10.0) ND (10.0) ug/l ND (10.0) ND (10.0) ND (10.0) Vinyl Acetate 10000 Xylene (Total) ug/l ND (3.0) ND (3.0) ND (3.0) ND (3.0) ND (3.0) m,p-Xylene ug/l 10000 ND (2.0) ND (2.0) ND (2.0) ND (2.0) ND (2.0) 10000 ND (1.0) ND (1.0) ND (1.0) ND (1.0) o-Xylene ug/l C/MS Semi-volatiles (SW846 8270D) ND (50.0) ND (50.0) ND (50.0) ND (50.0) Benzoic Acid ug/l ND (5.0) ND (5.0) ND (5.0) 2-Chlorophenol ug/l -ND (5.0) 4-Chloro-3-methyl phenol ug/l -ND (5.0) ND (5.0) ND (5.0) ND (5.0) ug/l 41.2 ND (5.0) ND (5.0) ND (5.0) ND (5.0) 2,4-Dichlorophenol -292 ND (5.0) ND (5.0) ND (5.0) ND (5.0) 2,4-Dimethylphenol ug/l -

PACE ANALYTICAL

Job Number: 60180084

Account: ISI Environmental Services

Project: Clean Harbors; Wichita, KS

Project Number:

Legend: Detection Exceed

Client Sample ID:		KS Tier 2 Risk Based Standards	BLD C BAY 1	BLD C BAY 2	BLD C BAY 3	BLD C BAY 4	TRIP BLANK
Lab Sample ID:		Residential	60180084004	60180084003	60180084002	60180084001	60180084006
Date Sampled:		GW (KDHE	10/10/2014	10/10/2014	10/10/2014	10/10/2014	10/10/2014
Matrix:		03/2014)	Water	Water	Water	Water	Water
2,4-Dinitrophenol	ug/l	31	ND (25.0)	ND (25.0)	ND (25.0)	ND (25.0)	-
4,6-Dinitro-2-methylphenol	ug/l	1	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	1.
2-Methylphenol (o-Cresol)	ug/l	744	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
3&4-Methylphenol (m&p Cresol)	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
2-Nitrophenol	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
4-Nitrophenol	ug/l		ND (25.0)	ND (25.0)	ND (25.0)	ND (25.0)	+
Pentachlorophenol	ug/l	1	ND (25.0)	ND (25.0)	ND (25.0)	ND (25.0)	
Phenol	ug/l	4560	ND (5.0)	ND (5.0)	9,2	ND (5.0)	
2,4,5-Trichlorophenol	ug/l	1260	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
2,4,6-Trichlorophenol	ug/l	13	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Acenaphthene	ug/l	253	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Acenaphthylene	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Aniline	ug/l	18	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
Anthracene	ug/l	1150	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
Benzo(a)anthracene	ug/l	0.00367	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	1- 154
Benzo(a)pyrene	ug/l	0.223	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Benzo(b)fluoranthene	ug/l	0.20	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	I marks
Benzo(g,h,i)perylene	ug/l	0.16	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	14
Benzo(k)fluoranthene	ug/I	1.62	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
4-Bromophenyl phenyl ether	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
Butyl benzyl phthalate	ug/l	333	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	*
Benzyl Alcohol	ug/l		5,5	ND (5.0)	ND (5.0)	ND (5.0)	
2-Chloronaphthalene	ug/I	344	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
4-Chloroaniline	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Carbazole	ug/l	28.70	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
Chrysene	ug/l	22.3	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
bis(2-Chloroethoxy)methane	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-

PACE ANALYTICAL

Job Number: 60180084

Account: ISI Environmental Services

Project: Clean Harbors; Wichita, KS

Project Number:

Legend: Detection Exceed

Client Sample ID:		KS Tier 2 Risk Based Standards	BLD C BAY 1	BLD C BAY 2	BLD C BAY 3	BLD C BAY 4	TRIP BLANK
Lab Sample ID:		Residential	60180084004	60180084003	60180084002	60180084001	60180084006
Date Sampled:		GW (KDHE	10/10/2014	10/10/2014	10/10/2014	10/10/2014	10/10/2014
Matrix:		03/2014)	Water	Water	Water	Water	Water
bis(2-Chloroethyl)ether	ug/l	0.124	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
bis(2-Chloroisopropyl)ether	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
4-Chlorophenyl phenyl ether	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	100
1,2-Dichlorobenzene	ug/l	600	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	-
1,3-Dichlorobenzene	ug/l		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	-
1,4-Dichlorobenzene	ug/l	75	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
2,4-Dinitrotoluene	ug/l	2.67	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
2,6-Dinitrotoluene	ug/l	0.557	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	121
3,3'-Dichlorobenzidine	ug/l		ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	-
Dibenzo(a,h)anthracene	ug/l	0.00805	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
Dibenzofuran	ug/l	4.13000	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
Di-n-butyl phthalate	ug/l	1350	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	100
Di-n-octyl phthalate	ug/l	18.4	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Diethyl phthalate	ug/l	12200	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
Dimethyl phthalate	ug/l	155000	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
bis(2-Ethylhexyl)phthalate	ug/l	6	29.7	49.4	ND (5.0)	ND (5.0)	*
Fluoranthene	ug/l	255	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Fluorene	ug/l	162	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	•
Hexachlorobenzene	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
Hexachloro-1,3-butadiene	ug/l	6.32	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	
Hexachlorocyclopentadiene	ug/l	50	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	-
Hexachloroethane	ug/l	9.14	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Indeno(1,2,3-cd)pyrene	ug/l	0.117	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	4
Isophorone	ug/l	-	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
2-Methylnaphthalene	ug/l	16.7	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	0-1
2-Nitroaniline	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0))-0
3-Nitroaniline	ug/l	_	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	

PACE ANALYTICAL 60180084 Job Number: ISI Environmental Services Account: Project: Clean Harbors; Wichita, KS **Project Number:** Legend: Detection Exceed Client Sample ID: KS Tier 2 Risk BLD C BAY 1 BLD C BAY 2 BLD C BAY 3 BLD C BAY 4 TRIP BLANK **Based Standards** Lab Sample ID: Residential 60180084004 60180084003 60180084002 60180084001 60180084006 **GW (KDHE** 10/10/2014 10/10/2014 Date Sampled: 10/10/2014 10/10/2014 10/10/2014 Matrix: 03/2014) Water Water Water Water Water ND (5.0) 4-Nitroaniline ug/l -ND (5.0) ND (5.0) ND (5.0) Naphthalene ug/l 1.11 ND (5.0) ND (5.0) ND (5.0) ND (5.0) Nitrobenzene ug/l 1.01 ND (5.0) ND (5.0) ND (5.0) ND (5.0) 9 ND (5.0) N-Nitroso-di-n-propylamine ug/l ND (5.0) ND (5.0) ND (5.0) --N-Nitrosodiphenvlamine ND (5.0) ND (5.0) ND (5.0) ND (5.0) ug/l Phenanthrene ug/l ND (5.0) ND (5.0) ND (5.0) ND (5.0) 202 ND (5.0) ND (5.0) ND (5.0) ND (5.0) Pyrene ug/l 4.96 Pyridine ug/l ND (10.0) ND (10.0) ND (10.0) ND (10.0) 1,2,4-Trichlorobenzene ug/l 70 ND (1.0) ND (1.0) ND (1.0) ND (1.0) -3C Semi-volatiles (SW846 8081B) 0.0495 ND (0.010) Aldrin ug/l ND (0.010) ND (0.010) ND (0.010) alpha-BHC ug/l ND (0.010) ND (0.010) ND (0.010) ND (0.010) beta-BHC ug/l ND (0.010) ND (0.010) ND (0.010) ND (0.010) delta-BHC ug/l -ND (0.010) ND (0.010) ND (0.010) ND (0.010) gamma-BHC (Lindane) ug/l 0.2 ND (0.010) ND (0.010) ND (0.010) ND (0.010) alpha-Chlordane ug/l -ND (0.010) ND (0.010) gamma-Chlordane ug/l ND (0.010) Dieldrin ug/l 0.048 ND (0.010) ND (0.010) ND (0.010) -1.35 4,4'-DDD ND (0.010) ND (0.010) ND (0.010) ND (0.010) ug/l 4,4'-DDE ug/l 1.03 ND (0.010) ND (0.010) ND (0.010) ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

ND (0.010)

-

4,4'-DDT

Endosulfan sulfate

Endrin aldehyde

Endrin ketone

Endrin

ug/l

ug/l

ug/l

ug/l

ug/l

0.73

2

-

.

-

PACE ANALYTICAL 60180084 Job Number: ISI Environmental Services Account: Project: Clean Harbors; Wichita, KS Project Number: Legend: Detection Exceed Client Sample ID: KS Tier 2 Risk BLD C BAY 1 BLD C BAY 2 BLD C BAY 3 BLD C BAY 4 TRIP BLANK **Based Standards** Lab Sample ID: Residential 60180084004 60180084003 60180084002 60180084001 60180084006 Date Sampled: GW (KDHE 10/10/2014 10/10/2014 10/10/2014 10/10/2014 10/10/2014 Water Matrix: 03/2014) Water Water Water Water ND (0.010) ND (0.010) ND (0.010) ND (0.010) Endosulfan-I ug/l -ND (0.010) Endosulfan-II ug/l -ND (0.010) ND (0.010) ND (0.010) -Heptachlor ug/l 0.4 ND (0.010) Heptachlor epoxide ug/l 0.2 ND (0.010) . 40 ND (0.010) ND (0.010) ND (0.010) ND (0.010) Methoxychlor ug/l Toxaphene ug/l 3 ND (0.30) ND (0.30) ND (0.30) ND (0.30) GC Semi-volatiles (SW846 8082A) Aroclor 1016 ug/l ND (0.50) ND (0.50) ND (0.50) ND (0.50) -Aroclor 1221 ug/l ND (0.50) ND (0.50) ND (0.50) ND (0.50) --Aroclor 1232 ND (0.50) ND (0.50) ND (0.50) ND (0.50) ug/l ND (0.50) ND (0.50) ND (0.50) ND (0.50) Aroclor 1242 ug/l Aroclor 1248 ug/l ND (0.50) Aroclor 1254 ug/l ND (0.50) ND (0.50) ND (0.50) Aroclor 1260 ug/l ND (0.50) ND (0.50) GC Semi-volatiles (SW846 8151A) 2,4-D 70 ug/l 6.9 2.1 3.9 50 2,4,5-TP (Silvex) ND (0.50) ND (0.50) ND (0.50) ND (0.50) ug/l 148 2,4,5-T ug/l ND (0.50) ND (0.50) ND (0.50) ND (0.50) ug/l 461 ND (0.50) ND (0.50) ND (0.50) ND (0.50) Dicamba ND (0.50) ND (0.50) ND (0.50) Dinoseb ug/l ND (0.50) ND (0.50) ND (0.50) ND (0.50) ND (0.50) Dalapon ug/l --Dichloroprop ug/l ND (0.50) ND (0.50) ND (0.50) ND (0.50) 2,4-DB ug/l 115 ND (0.50) ND (0.50) ND (0.50) ND (0.50)

PACE ANALYTICAL 60180084 Job Number: Account: ISI Environmental Services Clean Harbors; Wichita, KS Project: **Project Number:** Legend Detection Exceed Client Sample ID: KS Tier 2 Risk BLD C BAY 1 BLD C BAY 2 BLD C BAY 3 BLD C BAY 4 TRIP BLANK **Based Standards** Lab Sample ID: Residential 60180084004 60180084003 60180084002 60180084001 60180084006 **GW (KDHE** 10/10/2014 10/10/2014 10/10/2014 Date Sampled: 10/10/2014 10/10/2014 Matrix: 03/2014) Water Water Water Water Water MCPP ND (20.0) ND (20.0) ND (20.0) ND (20.0) ug/l -MCPA ND (20.0) ug/l -ND (20.0) ND (20.0) ND (20.0) Metals Analysis (EPA 6010) Aluminum 4560 ug/l 1240 339 6 78.6 Antimony ug/l 11.1 ND (6.0) ND (6.0) 42.3 ug/l 10 ND (10.0) ND (10.0) ND (10.0) Arsenic ug/l 2000 ND (200) ND (200) Barium Beryllium ug/l 4 ND (4.0) ND (4.0) ND (4.0) ND (4.0) -Cadmium ug/l 5 36.6 5.6 ND (5.0) ND (5.0) -Calcium ug/l 305000 66300 40700 29200 ug/l 100 1120 85.9 178 ND (10.0) Chromium 4.68 246 ND (50.0) ND (50.0) ND (50.0) Cobalt ug/l ug/l 1300 347 61.6 ND (25.0) Copper ug/l 9310 2910 -Iron 15 294 937 Lead ug/l 2070 22.6 Magnesium ug/l 16400 ug/l 50 1710 175 57.6 18.3 Manganese -2 2.5 ND (1.0) ND (1.0) ND (1.0) Mercury ug/l -ND (50.0) ND (50.0) ND (50.0) ND (50.0) Molybdenum ug/l Nickel ug/l 312 ND (40.0) ND (40.0) ND (10000) ND (10000) ND (10000) Potassium ug/l

ND (10.0)

ND (10.0)

119000

ND (10.0)

ND (10.0)

ND (10.0)

ND (10.0)

ND (10.0)

ND (10.0)

92000

-

-

-

50

77.9

-

-

ug/l

ug/l

ug/l

ug/l

Selenium

Silver

Sodium

Strontium

PACE ANALYTICAL							
Job Number:	601800	84					
Account:	ISI Env	ironmental Services					
Project:	Clean H	larbors; Wichita, KS					
Project Number:							
					Legend:	Detection	Exceed
Client Sample ID:		KS Tier 2 Risk Based Standards	BLD C BAY 1	BLD C BAY 2	BLD C BAY 3	BLD C BAY 4	TRIP BLANK
Lab Sample ID:		Residential	60180084004	60180084003	60180084002	60180084001	60180084006
Date Sampled:		GW (KDHE	10/10/2014	10/10/2014	10/10/2014	10/10/2014	10/10/2014
Matrix:		03/2014)	Water	Water	Water	Water	Water
Thallium	ug/l	-	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	-
Tin	ug/l	-	ND (50.0)	ND (50.0)	ND (50.0)	ND (50.0)	-
Titanium	ug/l	-	687	123	38.2	11.4	-
Vanadium	ug/l	-	88.2	ND (50.0)	ND (50.0)	ND (50.0)	-
Zinc	ug/l	4670	63800	4320	6870	963	-

	601800	084	
Account:	ISI Env	rironmental Services	
Project:	Clean	Harbors; Wichita, KS	
Project Number:			
Legend		Detection	Exceed
Client Sample ID:		KS Tier 2 Risk Based Standards	Bld C Bay 1-4
Lab Sample ID:		Residential GW	60180084005
Date Sampled:		(KDHE 03/2014)	10/10/2014
Matrix:			Water
12378-PeCDF	/I		NID (FO)
2378-TCDF	pg/L	*	ND(10)
12376-FECDF	pg/L	-	ND(50)
23478-PeCDF	pg/L pg/L	-	ND(50)
The state of the s	-	-	
23478-PeCDF	pg/L	-	ND(50)
23478-PeCDF 123478-HxCDF	pg/L pg/L		ND(50) ND(50)
23478-PeCDF 123478-HxCDF 123678-HxCDF	pg/L pg/L pg/L	-	ND(50) ND(50) ND(50)
23478-PeCDF 123478-HxCDF 123678-HxCDF 234678-HxCDF	pg/L pg/L pg/L pg/L		ND(50) ND(50) ND(50) ND(50)
23478-PeCDF 123478-HxCDF 123678-HxCDF 234678-HxCDF 123789-HxCDF 1234678-HpCDF	pg/L pg/L pg/L pg/L pg/L		ND(50) ND(50) ND(50) ND(50) ND(50)
23478-PeCDF 123478-HxCDF 123678-HxCDF 234678-HxCDF 123789-HxCDF 1234678-HpCDF	pg/L pg/L pg/L pg/L pg/L pg/L		ND(50) ND(50) ND(50) ND(50) ND(50) ND(50)
23478-PeCDF 123478-HxCDF 123678-HxCDF 234678-HxCDF 123789-HxCDF 1234678-HpCDF 1234789-HpCDF	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	-	ND(50) ND(50) ND(50) ND(50) ND(50) ND(50) ND(50)
23478-PeCDF 123478-HxCDF 123678-HxCDF 234678-HxCDF 123789-HxCDF 1234678-HpCDF 1234789-HpCDF 0CDF 2378-TCDD	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	- - - - - - 4930000	ND(50) ND(50) ND(50) ND(50) ND(50) ND(50) ND(50) 1700
23478-PeCDF 123478-HxCDF 123678-HxCDF 234678-HxCDF 123789-HxCDF 1234678-HpCDF 1234789-HpCDF OCDF 2378-TCDD 12378-PeCDD 123478-HxCDD	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	- - - - - - 4930000 30	ND(50) ND(50) ND(50) ND(50) ND(50) ND(50) ND(50) 1700 ND(10) ND(50) ND(50)
23478-PeCDF 123478-HxCDF 123678-HxCDF 234678-HxCDF 123789-HxCDF 1234789-HpCDF 0CDF 2378-TCDD 12378-PeCDD 123478-HxCDD	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	- - - - - - 4930000 30	ND(50) ND(50) ND(50) ND(50) ND(50) ND(50) 390* I ND(50) 1700 ND(10) ND(50) ND(50) ND(50) ND(50)
23478-PeCDF 123478-HxCDF 123678-HxCDF 234678-HxCDF 123789-HxCDF 1234678-HpCDF 1234789-HpCDF OCDF 2378-TCDD 12378-PeCDD 123478-HxCDD	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	- - - - - - - 4930000 30 - -	ND(50) ND(50) ND(50) ND(50) ND(50) ND(50) ND(50) 1700 ND(10) ND(50) ND(50)

17000

Notes: (") Reporting Limit in Parenthesis

pg/L

OCDD

^{* =} Estimated Maximum Possible Concentration

I = Interference Present

Job Number:	60182837			
Account:	ISI Environm	nental Services		
Project:	Clean Harbo	rs; Wichita, KS		
Project Number:				
Legen	d:		Detection	Exceed
Client Sample ID:		KS Tier 2 Risk Based Standards	Bld C- Bay 1- CW	Bld C- Bay 1- F
Lab Sample ID:		Residential GW	60182837010	60182837011
Date Sampled:		(KDHE 03/2014)	11/18/2014	11/18/2014
Matrix:			Water	Water
Metals Analysis (EPA 6	010)			
Aluminum	lug/l		2040	7550
Antimony	ug/l	6	ND (6.0)	13.9
Arsenic	ug/l	10	ND (10.0)	11.0
Barium	ug/l	2000	ND (200)	752
Beryllium	ug/l	4	ND (4.0)	ND (4.0)
Cadmium	ug/l	5	ND (5.0)	12.0
Calcium	ug/l		51200	90000
Chromium	ug/l	100	33.4	112
Cobalt	ug/l	4.68	ND (50.0)	ND (50.0)
Copper	ug/l	1300	ND (25.0)	73.6
Iron	ug/l		5210	14300
Lead	ug/l	15	107	460
Magnesium	ug/l		16900	17500
Manganese	ug/l	50	116	259
Mercury	ug/l	2	ND (1.0)	ND (1.0)
Molybdenum	ug/l		ND (50.0)	ND (50.0)
Nickel	ug/l	312	ND (40.0)	62.4
Potassium	ug/l	9	ND (10000)	ND (10000)
Selenium	ug/l	50	ND (10.0)	ND (10.0)
Silver	ug/l	77.9	ND (10.0)	ND (10.0)
Sodium	ug/l		93200	94300
Strontium	ug/l		324	438
Thallium	ug/l		ND (10.0)	ND (10.0)
Tin	ug/l	-	ND (50.0)	ND (50.0)
Titanium	ug/l		72.6	251
Vanadium	ug/l		ND (50.0)	ND (50.0)
Zinc	ug/l	4670	3200	6680

PACE ANALYTICAL Job Number: 60182837 Account: (S) Environmental Services Clean Harbors: Wichita KS Project: Project Number. Exceedance Legend BLD C-BAY 5-F BLD C-BAY-6-CW BLD C-BAY 6-F BLD C-BAY 5-CW BLD C-BAY 7-CW Client Sample ID: KS Tier 2 Risk BLD C-BAY 7-F BLD C-BAY 8-CW BLD C-BAY 8 - F Dup-11 Trip Blank Based Standard Lab Sample ID: 60182837007 60182837008 60182837003 60182837004 60182837002 60182837005 60182837001 Residentia 60182837006 60182837012 60182837013 **Date Sampled** GW (KDHE 11/18/2014 11/18/2014 11/18/2014 11/18/2014 11/18/2014 11/18/2014 11/18/2014 11/18/2014 11/18/2014 11/18/2014 03/2014) Matrix: Water JMS Volatiles (SW846 8260B) Acetone 11500 ND (25.0) ug/l ND (25.0) ND (20.0) 0.0415 ND (20.0) ND (20.0) ND (20.0) ND (20.0) ND (20.0) Acrolein ug/l ND (20.0) ND (20.0) ND (20.0) ND (20.0) 0.0491 ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) Acrylonitrile ug/l ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) Benzene ug/l 5 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) Bromobenzene ug/l ND (1.0) Bromochloromethane ug/l ND (1.0) ND (1.0) ND (1.0) Bromodichloromethane ua/l 80 ND (1.0) ND (1.0) Bromoform ND (1.0) 80 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ug/l ND (1.0) ND (1.0) ND (2.0) ND (2.0) ND (2.0) ND (2.0) ND (2.0) Bromomethane ug/l ND (2.0) ND (2.0) ND (2.0) ND (2.0) ND (2.0) 2-Butanone (MEK) иаЛ 4920 ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (5 0) ND (5.0) ND (5.0) ND (5.0) n-Butylbenzene ug/l 169 ND (1.0) sec-Butylbenzene ug/l 30.5 ND (1.0) tert-Butvlbenzene ND (1.0) ND (1.0) ug/l ND (1.0) Carbon disulfide ug/l 716 ND (2.0) ND (1.0) Carbon tetrachloride ug/l 5 ND (1.0) 100 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) Chlorobenzene lug/l ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (2.0) ND (2.0) Chloroethane ug/l 14000 ND (2.0) Chloroform ug/l 80 ND (1.0) ND (1.0) ND (1.0) ND (1.0) 127 ND (1.0) ND (1.0) Chloromethane ug/l ND (1.0) -Chlorotoluene 88.9 ND (1.0) идЛ 4-Chlorotoluene ND (1.0) ug/l ND (1.0) 25 ND (1.0) ND (1.0) 1 1-Dichloroethane ua/l ND (10) ND (1.0) 7 ND (1.0) 1.1-Dichloroethene ua/l ND (1.0) 1,1-Dichloropropene ug/l ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 1,2-Dibromo-3-chloropropane ug/l 0.20 ND (2.0) 1.2-Dibromoethane (EDB) lug/l 0.05 ND (1.0) 1,2-Dichloroethane 5 ND (1.0) uq/l 1,2-Dichloropropane ug/l 5 ND (1.0) 1,3-Dichloropropane ug/l ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1 0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) 2.2-Dichloropropane ug/l ND (1.0) 1,4 Dioxane (p-Dioxane) ug/I 77.20 ND (100) Dibromomethane ug/l ND (2.0) ua/l 80 ND (1.0) Dibromochloromethane ND (1.0) Dichlorodifluoromethane ug/l 366 ND (2.0) cis-1,2-Dichloroethene ug/l ND (1.0) cis-1 3-Dichloropropene ug/l ND (1.0) 1,2-Dichlorobenzene ug/l 600 ND (1.0) 1.3-Dichlorobenzene ug/I ND (1.0) 1.4-Dichlorobenzene ug/I 75 ND (1.0) trans-1,2-Dichloroethene ug/l 100 ND (1.0) trans-1,3-Dichloropropene ug/l ND (1.0) Ethylbenzene ug/l 700 ND (1.0) ND (10) 2-Hexanone ug/l ND (10.0) Hexachloro-1,3-butadiene ug/l 6.32 ND (2.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) Isopropylbenzene ug/l 451 ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) ND (1.0) p-Isopropyltoluene ug/l ND (1.0) 4-Methyl-2-pentanone ug/l 1020 ND (5.0) Methylene chloride ug/l 5 ND (5.0) ND (5.0) ND (5.0) ND (5 0) ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (5.0) Methyl Tert Butyl Ether ug/l 133 ND (1.0) ND (1.0)

Client Sample ID:		KS Tier 2 Risk Based Standards	BLD C-BAY 5-CW	BLD C-BAY 5-F	BLD C-BAY-6-CW	BLD C-BAY 5-F	BLO C-BAY 7-CW	BLO C-BAY 7-F	BLD C-BAY 8-CW	BLO C-BAY 8 - F	Dup-11	Trip Blank
Lab Sample ID:		Residential	60182837007	50182837008	60182837003	60182837004	60182837002	60182837005	60182837001	60182837006	60182837012	60182837013
Date Sampled:		GW (KDHE	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014
Matrix:		03/2014)	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Naphthalene	ug/l	1.11	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)						
n-Propylbenzene	ug/l	660	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
Styrene	ug/l	100	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	2.9	ND (1.0)	ND (1.0)
,1,1,2-Tetrachloroethane	ug/l	5.35	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
,1,1-Trichloroethane	ug/l	200	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
1,1,2,2-Tetrachloroethane	ug/l	0.694	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
,1,2-Trichloroethane	ug/l	5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
,2,3-Trichlorobenzene	ug/l		ND (1,0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
,2,3-Trichloropropane	ug/l	0.00468	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
,2,4-Trichlorobenzene	ug/l	70	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
,2,4-Trimethylbenzene	ug/l	8.44	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
,3,5-Trimethylbenzene	ug/l	44	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
etrachloroethylene	ug/l	5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
oluene	ug/l	1000	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	10	ND (1.0)	ND (1.0)
richloroethene	ug/l	5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
richlorofluoromethane	ug/l	1090	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)						
'inyl chloride	ug/l	2	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)						
/inyl Acetate	ug/l	406	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10,0)	ND (10.0)	ND (10.0)
(ylene (Total)	ug/l	10000	ND (3.0)	ND (3.0)	ND (3.0)	35	ND (3.0)	ND (3.0)	4	ND (3.0)	ND (3.0)	ND (3.0)
n.p-Xylene	ug/l	10000	ND (2.0)	ND (2.0)	ND (2.0)	25	ND (2.0)			ND (2.0)	ND (2.0)	ND (2.0)
-Xylene	ug/l	10000	ND (1.0)	ND (1.0)	100	14	ND (1.0)	ND (1.0)	100000	ND (1.0)	ND (1.0)	ND (1.0)

GCIMS Semi-volatiles (SW846 82	70D)											
Benzoic Acid	lug/l		ND (50,0)	ND (50.0)	ND (50.0)	51.6	ND (50.0)					
2-Chlorophenol	ug/l	7 - 7	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
4-Chloro-3-methyl phenol	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
2,4-Dichlorophenol	ug/l	41.2	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	A				
2,4-Dimethylphenol	ug/l	292	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
2.4-Dinitrophenol	lug/l	31	ND (25.0)	ND (25.0)	ND (25.0)	ND (24.5)	ND (25.0)					
1,6-Dinitro-2-methylphenol	ug/l		ND (10.0)	ND (10.0)	ND (10.0)	ND (9.8)	ND (10.0)	-1				
2-Methylphenol (o-Cresol)	ug/l	744	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
&4-Methylphenol (m&p Cresol)	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	- 2				
-Nitrophenol	ug/l	-	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	-				
-Nitrophenol	ug/l		ND (25.0)	ND (25.0)	ND (25.0)	ND (24.5)	ND (25.0)	ND (25.0)	ND (26.0)	ND (25.0)	ND (25.0)	[40]
Pentachlorophenol	ug/l	1	ND (25.0)	ND (25.0)	ND (25.0)	ND (24.5)	ND (25.0)					
Phenol	ug/l	4560	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	9				
,4,5-Trichlorophenol	ug/l	1260	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	- 6				
,4,6-Trichlorophenol	ug/l	13	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
cenaphthene	ug/l	253	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
cenaphthylene	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	-				
niline	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
Anthracene	ug/l	1150	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	- 6				
enzo(a)anthracene	ug/l	0.00367	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	- 4				
lenzo(a)pyrene	ug/l	0.223	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
enzo(b)fluoranthene	ug/l	0.20	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	- 6				
enzo(g.h.i)perylene	ug/l	0.16	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	1.7				
Benzo(k)fluoranthene	ug/l	1.62	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
-Bromophenyl phenyl ether	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
utyl benzyl phthalate	ug/l	333		ND (5.0)	ND (5.0)	17.7	ND (5.0)		ND (5.0)	6.9	- 11	
Benzyl Alcohol	ug/l	-	302	17.9	- Mil	31	10.5	00.0	30.	40.0	50/76	
-Chloronaphthalene	ug/l	344	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
-Chloroaniline	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)					
arbazole	ug/l	28.70	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	-				
hrysene	ug/l	22.3	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	-				
is(2-Chloroethoxy)methane	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	7.57				
is(2-Chloroethyl)ether	ug/l	0.124	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	- 3				
is(2-Chloroisopropyl)ether	ug/l	-	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	×				
-Chlorophenyl phenyl ether	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	-				

Client Sample ID:		KS Tier 2 Risk Based Standards	BLD C-BAY 5-CW	BLD C-BAY 5-F	BLD C-BAY-6-CW	BLD C-BAY 6-F	BLD C-BAY 7-CW	BLD C-BAY 7-F	BLD C-BAY 8-CW	BLD C-BAY 8 - F	Dup-11	Trip Blank
Lab Sample ID:	-	Residential	60182837007	60182837008	60182837003	60182837004	60182837002	60182837005	60182837001	60182837006	60182837012	6018283701
Date Sampled:		GW (KDHE	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014	11/18/2014
Matrix:		03/2014)	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
1,2-Dichlorobenzene	ug/l	600	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
1,3-Dichlorobenzene	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
1,4-Dichlorobenzene	ug/l	75	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
2,4-Dinitrotoluene	ug/l	2.67	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
2,6-Dinitrotoluene	ug/l	0.557	5.6	ND (5.0)	9.4	21.9	ND (5.0)	10.6	8.7	ND (5.0)	8.4	
3,3'-Dichlorobenzidine	ug/l		ND (10.0)	ND (10.0)	ND (10.0)	ND (9.8)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	-
Dibenzo(a,h)anthracene	ug/l	0.00805	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Dibenzofuran	ug/l	4.13000	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Di-n-butyl phthalate	ug/l	1350	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Di-n-octyl phthalate	ug/l	18.4	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Diethyl phthalate	ug/l	12200	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	1
Dimethyl phthalate	ug/l	155000	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
pis(2-Ethylhexyl)phthalate	ug/l	6	59.1	70.2	14.8	177	21.2	191	64.1	79.5	91.5	
Fluoranthene	ug/l	255	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Fluorene	ug/l	162	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Hexachlorobenzene	ug/l	1	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Hexachloro-1,3-butadiene	ug/l	6.32	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Hexachlorocyclopentadiene	ug/l	50	ND (10.0)	ND (10.0)	ND (10.0)	ND (9.8)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	
Hexachloroethane	ug/l	9.14	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
ndeno(1,2,3-cd)pyrene	ug/l	0.117	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
sophorone	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5,0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
2-Methylnaphthalene	ug/l	16.7	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
2-Nitroaniline	ug/l	10.11	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
3-Nitroaniline	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
4-Nitroaniline	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Naphthalene	ug/l	1.11	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
Nitrobenzene	ug/l	1.01	ND (5,0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
N-Nitroso-di-n-propylamine	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (6.0)	ND (5.0)	ND (5.0)	ND (5.0)	
N-Nitrosodiphenylamine	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-
Phenanthrene	ug/l		ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Pyrene	ug/l	202	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
Pyridine	ug/l	4.96	ND (10.0)	ND (10.0)	ND (10.0)	ND (9.8)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	ND (10.0)	
1,2,4-Trichlorobenzene	ug/l	70	ND (5.0)	ND (5.0)	ND (5.0)	ND (4.9)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	
,2,4-111011010000120110	Tug/i	10	ND (0.0)	145 (0.0)	110 (0.0)	(40 (4.0)	145 (0.0)	110 (0.0)	140 (5.5)	(40 (5.0)	ND (0.0)	
3C Semi-volatilus (SW846 8081	8)											
Aldrin	ug/l	0.0495	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	- 4
lpha-BHC	ug/l		ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	-
eta-BHC	ug/l		ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	
lelta-BHC	ug/l		ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	
amma-BHC (Lindane)	ug/l	0.2	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	
lpha-Chlordane	ug/l	-	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	
amma-Chlordane	ug/l		ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	
Dieldrin	ug/l	0.048	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	
4'-DDD	ug/l	1.35	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	- 9
	ug/l	1.03	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	4
4-DDE	ug/l	0.73	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	
	_	2	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	
4'-DDT		-	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	
4'-DDT ndrin	ug/l			()	St. St. Back County		ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	
4'-DDT ndrin ndosulfan sulfate	ug/l		The same of the sa	ND (0.010)	ND (0.010)						110 (0.010)	
.4'-DDT ndrin ndosulfan sulfate ndrin aldehyde	ug/l ug/l		ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010) ND (0.010)			ND (0.010)	ND (0.010)	ND (0.010)	12
.4'-DDT ndrin ndosulfan sulfate ndrin aldehyde ndrin ketone	ug/l ug/l ug/l		ND (0.010) ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	
,4'-DDT ndrin ndosulfan sulfate ndrin aldehyde ndrin ketone ndosulfan-l	ug/l ug/l ug/l	1	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010)	ND (0.010) ND (0.010)	ND (0.010) ND (0.010)	ND (0.010) ND (0.010)	ND (0.010) ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	- 4
.4-DE .4-DDT	ug/l ug/l ug/l ug/l ug/l		ND (0.010) ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010)	ND (0.010) ND (0.010)	ND (0.010) ND (0.010)	
,4-DDT ndrin ndroulfan sulfate ndrin aldehyde ndrin ketone ndroulfan-I ndosulfan-I eptachlor	ug/l ug/l ug/l ug/l ug/l	0.4	ND (0.010) ND (0.010) ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	
.4-DDT ndrin ndosulfan sulfate ndrin aldehyde ndrin ketone ndosulfan-I ndosulfan-I	ug/l ug/l ug/l ug/l ug/l		ND (0.010) ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010) ND (0.010)	ND (0.010) ND (0.010)	ND (0.010) ND (0.010)	ND (0.010) ND (0.010)	

Client Sample ID: Lab Sample ID: Date Sampled: Matrix:		KS Tier 2 Risk Based Standards Residential GW (KDHE 03/2014)	BLD C-BAY 5-CW 60182837007 11/18/2014 Water	BLD C-BAY 5-F 60182837008 11/18/2014 Water	BLD C-BAY-6-CW 80182837003 11/18/2014 Water	8LD C-BAY 6-F 60182837004 11/18/2014 Water	8LD C-BAY 7-CW 60182837002 11/18/2014 Water	BLD C-BAY 7-F 80182837005 11/18/2014 Water	8LD C-BAY 8-CW 60182837001 11/18/2014 Water	8LD C-BAY 8 - F 60182837006 11/18/2014 Water	0up-11 60182837012 11/18/2014 Water	Trip Blank 60182837013 11/18/2014 Water
												1
Aroclor 1016	ug/l		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.49)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	
Aroclor 1221	ug/l	-	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.49)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	
roclor 1232	ug/l		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.49)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	
Aroclor 1242	ug/l		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.49)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	
Aroclor 1248	ug/l		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.49)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	
Aroclor 1254	ug/l	- 1	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.49)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	
Aroclor 1260	ug/l		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.49)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	-
AND THE PROPERTY AND ADDRESS.	WW.											
GC Semi-volatiles (SW846 8151.	A)											
,4-D	ug/l	70	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	-
2,4,5-TP (Silvex)	ug/l	50	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	
2,4,5-T	ug/l	148	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	
Dicamba	ug/l	461	ND (0.50)	ND (0.50)	ND (0.50)	8.7	ND (0.50)	47	ND (0.50)	ND (2.5)	ND (0.50)	
Dinoseb	ug/l		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	10
Dalapon	ug/l		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	
Dichloroprop	ug/l		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	-
:.4-DB	ug/l	115	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	14
,4-00			772 72 72 72 72 72	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	
A Committee of the Comm	ug/l		ND (20.0)	ND (20.0)	140 (20.0)							
ICPP ICPA	ug/l ug/l	:	ND (20.0) ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	
MCPP MCPA Matais Analysis (EPA 6010)	ug/l		ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)	5910	3250	
MCPP MCPA Motals Analysis (EPA 6010) Muminum Antimony	ug/l ug/l	- 6	ND (20.0) 496 ND (6.0)	ND (20.0) 1558 ND (6.0)	ND (20.0)	ND (20.0)	ND (20.0) 2100- ND (6.0)	ND (20.0)	ND (20.0) 2520 ND (6.0)	5610 ND (6.0)	9250 ND (6.0)	
MCPP MCPA Motals Analysis (EPA 8010) Aluminum Antimony Arsenic	ug/l ug/l ug/l ug/l	- 6 10	ND (20.0) 496 ND (6.0) ND (10.0)	ND (20.0) 1558 ND (6.0) ND (10.0)	ND (20.0) 1890 ND (6.0) ND (10.0)	ND (20.0)	2400- ND (8.0) ND (10.0)	7419 11.4 10.1	2520 ND (6.0) ND (10.0)	\$910 ND (6.0) ND (10.0)	3250	
MCPP MCPA Matais Analysis (EPA 8010) Muminum Antimony Ausenic Barium	ng/l ug/l ug/l ug/l ug/l	- 6 10 2000	498 ND (6.0) ND (10.0) ND (200)	ND (20.0) 1558 ND (6.0) ND (10.0) ND (200)	ND (20.0) 1850 ND (6.0) ND (10.0) ND (200)	7830- 12.8 10.1	X700- ND (8.0) ND (10.0) ND (200)	7410 11.4 10.1 544	ND (20.0) 2520 ND (6.0) ND (10.0) ND (200)	SG10 ND (6.0) ND (10.0)	3250 ND (6.0) ND (10.0) 254	* * * * * * * * * * * * * * * * * * * *
MCPP Motals Anatysis (EPA 6019) Aluminum Antimony Avenic Sarylium	ug/l ug/l ug/l ug/l ug/l	- 6 10 2000 4	ND (20.0) 496 ND (6.0) ND (10.0) ND (200) ND (4.0)	ND (20.0) 1558 ND (6.0) ND (10.0) ND (200) ND (4.0)	ND (20.0) 1850 ND (6.0) ND (10.0) ND (200) ND (4.0)	7810- 12.8 10.1 464 ND (4.0)	ND (20.0) Z500 ND (5.0) ND (10.0) ND (200) ND (4.0)	7410 11.4 10.1 5441 ND (4.0)	2520 ND (6.0) ND (10.0) ND (200) ND (4.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0)	3250 ND (6.0) ND (10.0) 254 ND (4.0)	
MCPP Motals Analysis (EPA 5010) Aluminum Antimony Arsenic Barrium Beryllium Cadmium	ngn ngn ugn ugn ugn ugn	- 6 10 2000 4 5	498 ND (6.0) ND (10.0) ND (200)	ND (20.0) 1558 ND (6.0) ND (10.0) ND (200)	ND (20.0) 1890 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0)	ND (20.0) 7650 12.8 10.1 464 ND (4.0) 7.6	ND (20.0) 2100 ND (5.0) ND (10.0) ND (200) ND (4.0) ND (5.0)	7410 11.4 10.1 544 ND (4.0) 8.2	ND (20.0) 2520 ND (6.0) ND (10.0) ND (200)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9	3250 ND (6.0) ND (10.0) 25.4 ND (4.0) 5.0	
MCPP MCPA Matais Analysis (EPA 5010) Muminum Antimony Arsonic Sarium Seryllium Cadmium Calcium	ugh ugh ugh ugh ugh ugh ugh ugh ugh	- 6 10 2000 4 5	ND (20.0) 496 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 31206	ND (20.0) 1550 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0)	1890 ND (8.0) ND (10.0) ND (10.0) ND (200) ND (4.0) ND (5.0)	7610- 12.8 10.1 464 ND (4.0) 7.6	ND (20.0) Z100 ND (8.0) ND (10.0) ND (200) ND (200) ND (4.0) ND (6.0)	7410 11.4 10.1 544 ND (4.0) 8.2	2520 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0)	5810 ND (6.0) ND (10.0) 444 ND (4.0) 6.9	3250 ND (6.0) ND (10.0) 254 ND (4.0) 5.0	
MCPP MCPA Motals Analysis (EPA 8010) Muminum Antimony Avsenic Barium Beryllium Beryllium Balcium Chromium	ugA ugA ugA ugA ugA ugA ugA ugA ugA	- 6 10 2000 4 5 - 1000	ND (20.0) 496 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 31206 ND (10.0)	ND (20.0) 1558 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 35520	ND (20.0) 1350 ND (6.0) ND (10.0) ND (200) ND (200) ND (5.0) 217400 20-2	ND (20.0) 7610 12.8 10.1 466 ND (4.0) 7.6 773001 139	ND (20.0) 2100 ND (8.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 235	7,410 11.4 10.1 544, ND (4.0) 8.2 11000 105	ND (20.0) 2520 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 235609 34.6	5810 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 75000 167	3250 ND (6.0) ND (10.0) 254 ND (4.0) 5.0	
MCPP Matais Anatysis (EPA 8010) Numinum Intimony Vasenic Sarrium Seryllium Cadmium Calcium Chromium Cobalt	ugA ugA ugA ugA ugA ugA ugA ugA ugA	- 6 10 2000 4 5 - 100 4.68	ND (20.0) 498 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 31206 ND (10.0) ND (50.0)	ND (20 0) 1550 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 35.71 ND (50.0)	1890 ND (8.0) ND (10.0) ND (10.0) ND (200) ND (4.0) ND (5.0)	7610- 12.8 10.1 464 ND (4.0) 7.6	ND (20.0) Z100 ND (8.0) ND (10.0) ND (200) ND (200) ND (4.0) ND (6.0)	7410 11.4 10.1 544 ND (4.0) 8.2	2520 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0)	5810 ND (6.0) ND (10.0) 444 ND (4.0) 6.9	3250 ND (6.0) ND (10.0) 254 ND (4.0) 5.0	
ACPP ACPA Ratals Analysis (EPA 6010) Suminum	ugh ugh ugh ugh ugh ugh ugh ugh ugh ugh	5 5 10 2000 4 5 - 100 4,68 1300	ND (20.0) 496 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 31206 ND (10.0)	ND (20.0) 1558 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 35520	ND (20.0) 1890 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 27-20 ND (50.0)	ND (20.0) 12.8 10.1 464 ND (4.0) 7.6 77.50 139 ND (50.0)	ND (20.0) 2100 ND (5.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 2120 ND (5.0)	7410 11.4 10.1 544 ND (4.0) 8.2 105 ND (50.0)	ND (20.0) 2520 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 35500 44 6 ND (50.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 PD065 157 ND (50.0)	3250 ND (6.0) ND (10.0) 25.4 ND (4.0) 5.0 42100 195 ND (50.0)	
ACPP ACPA Motals Analysis (EPA 5010) Muminum Inhilmony Insenic Isarium Saryillium Sadmium Salcium Chronium Sobalt Sopper	ugh	5 - 100 2000 4 5 - 100 4.68 1300	ND (20.0) 496 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 31206 ND (10.0) ND (50.0) ND (50.0)	ND (20 0) 1558 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 35304 35 ft ND (50.0) ND (25.0)	ND (20.0) 1890 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 1740 1740 1740 1740 1740 1740 1740 1740	7610 12.8 10.1 464 ND (4 0) 7.6 77500 139 ND (50.0)	ND (20.0) 2100 ND (5.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 224 ND (5.0) 309	7410 11.4 10.1 544 ND (4.0) 8.2 71000 105 ND (50.0)	ND (20.0) 2520 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 35500 34 8 ND (50.0) 35 0	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 70045 157 ND (50.0) \$3.5	3250 ND (6.0) ND (10.0) 254 ND (4.0) 5.0 42103 195 ND (50.0)	
MCPP MCPA Sotals Analysis (EPA 6010) Suminum Multimony sursenic Sarium Saryllium Sadmium Salcium Chromium Sobalt Sopper Soon ead	ugh	- 6 10 2000 4 5 - 100 4.68 1300	ND (20.0) 496 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 31206 ND (10.0) ND (50.0) ND (50.0) ND (25.0)	ND (20.0) 1550 ND (6.0) ND (10.0) ND (10.0) ND (4.0) ND (5.0) ND (5.0) ND (5.0) ND (5.0) 15500 155.0	ND (20.0) 1350 ND (6.0) ND (10.0) ND (200) ND (200) ND (5.0) 13740 20-2 ND (50.0) 42-2 98.1	ND (20.0) 7650 12.8 10.1 464 ND (4.0) 7.6 77500 139 ND (50.0) 65.1 12005 326	ND (20.0) 2100 ND (8.0) ND (10.0) ND (200) ND (4.0) ND (5.0) ND (5.0) 221 ND (5.0) 388	7410 11.4 10.1 544 ND (4.0) 8.2 31000 105 ND (50.0) 69.3 11150 263	ND (20.0) 2520 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 2550 24 5 ND (50.0) 25 6 272.6	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 Toods 157 ND (50.0)	3250 ND (6.0) ND (10.0) 25.4 ND (4.0) 5.0 4305 195 ND (50.0) 20.5 4728 98.8	
ACCPP ACTAL SARatysis (EPA 8010) Muminum Antimony Australia Beryllium Beryllium Beryllium Cadmium Bobalt Copper Con Bead Bagnesium	ugh ugh ugh ugh ugh ugh ugh ugh ugh ugh	- 6 10 2000 4 5 - 100 4.68 1300	ND (20.0) 498 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) ND (5.0) ND (50.0) ND (50.0) ND (25.0)	ND (20 0) 1550 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 35301 35 n ND (50.0) ND (25.0)	ND (20.0) 1350 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 14401 14401 14401 14401 14401 14401 14401 14401 14401 14401 14401 14401 14401 14401 14401 14401 14401 14401	ND (20.0) P610 12.8 10.1 469 ND (4.0) 7.6 F050 139 ND (50.0) 85.5 1006 326	ND (20.0) 270D ND (8.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 224 ND (5.0) 235 ND (5.0.0) 388	7410 11.4 10.1 5441 ND (4.0) 8.2 1005 ND (50.0) 60.3 14100 263	ND (20.0) 2520 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 2550 ND (50.0) 2570 72.6	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 70001 157 ND (50.0) 58.5 10300 528	3250 ND (6.0) ND (10.0) 254 ND (4.0) 5.0 4203 195 ND (50.0) 20,6 4728 98.8	
MCPP Motals Analysis (EPA 5010) Muminum Muminum Motali Analysis (EPA 5010) Muminum Motali Analysis (EPA 5010) Motali Analysis (EPA 5010	ugh ugh ugh ugh ugh ugh ugh ugh ugh ugh	- 6 10 2000 4 5 - 100 4,68 1300 - 15 - 50	ND (20.0) 498 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 31206 ND (10.0) ND (50.0) ND (50.0) ND (25.0) 27.1 18-20 30.2	ND (20 0) 1550 ND (6.0) ND (10.0) ND (10.0) ND (5.0) 35201 35701 ND (50.0) ND (50.0) ND (50.0) ND (50.0) ND (50.0)	ND (20.0) 1890 ND (6.0) ND (10.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 2740 202 ND (50.0) 422 68.72 98.1 16750 105	ND (20.0) 7610 12.8 10.1 464 ND (4.0) 7.6 77500 139 ND (50.0) 64.5 12006 326 233	ND (20.0) 2100 ND (3.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 224 ND (50.0) 237 248 1500 66.0	ND (20.0) 7.410 11.4 10.1 5.441 ND (4.0) 8.2 1100 105 ND (50.0) 60.3 1110 263 2730 218	ND (20.0) 2520 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 25500 44 ff ND (50.0) 27.6 14005 83.2	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 70000 157 ND (50.0) 11.5 00000 528 17100 216	3250 ND (6.0) ND (10.0) 25.4 ND (4.0) 5.0 42300 195 ND (50.0) 26.6 4728 98.8	
MCPP MCPA Matris Analysis (EPA 5010) Muminum Minimony Ausonic Barium Beryllium Baldium Baldium Bromium Bobalt Bopper Bon Bagnesium Banganese Bercury	ngh Agu Agu Agu Agu Agu Agu Agu Agu Agu Ag	- 6 10 2000 4 5 - 100 4.68 1300 - 15 - 50	ND (20.0) 496 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 31205 ND (10.0) ND (50.0) ND (25.0) 27.1 18-20 ND (10.0)	ND (20.0) 1550 ND (6.0) ND (10.0) ND (10.0) ND (4.0) ND (5.0) 35500 34.0 ND (50.0) ND (50.0) 55.6 15050 ND (1.0) ND (1.0)	ND (20.0) 1300 ND (6.0) ND (6.0) ND (200) ND (4.0) ND (5.0) 17400 20-2 ND (50.0) 32-3 98.1 56700 105 ND (1.0)	ND (20.0) 7650 12.8 10.1 464 ND (4.0) 7.6 77500 139 ND (50.0) 65.1 12005 326 77500 326 77500 327 ND (1.0)	ND (20.0) 2700. ND (8.0) ND (10.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 2721 ND (5.0) 2731 38.8 15555 68.0 ND (1.0)	ND (20.0) 74 10 11.4 10.1 544 ND (4.0) 8.2 105 ND (50.0) 63.3 119.0 263 17300 218 ND (4.0)	ND (20.0) 2520 ND (6.0) ND (10.0) ND (200) ND (5.0) ND (5.0) 23.60 34.6 ND (60.0) 3.1.0 3870 72.6 15000 83.2 ND (10.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 70048 157 ND (50.0) 55.5 10300 528 17400 216 ND (1.0)	3250 ND (6.0) ND (10.0) 254 ND (4.0) 5.0 42103 195 ND (50.0) 20.4 4728 98.8 15304 96.4 ND (1.0)	
ICCPP ICCPA Suminum S	ugh ugh ugh ugh ugh ugh ugh ugh	- 6 10 2000 4 5 - 100 4.68 1300 - 15 - 2	ND (20.0) 498 ND (6.0) ND (10.0) ND (200) ND (200) ND (5.0)	ND (20 0) 1550 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 15500 15500 15600 1570	ND (20.0) 1350 ND (6.0) ND (6.0) ND (10.0) ND (200) ND (5.0) 17400 17400 17400 17400 17500 17500 17500 17500 ND (1.0) ND (50.0)	ND (20.0) 7630 12.8 10.1 469 ND (4.0) 7.6 77300 139 ND (50.0) 86.3 12005 326 12005 326 12005 ND (1.0) ND (50.0)	ND (20.0) 2700 ND (8.0) ND (0.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 201 ND (5.0) 38.8 1500 66.0 ND (1.0) ND (5.0)	ND (20.0) 7,810 11.4 10.1 541 ND (4.0) 5.2 1000 105 ND (50.0) 263 1100 263 1700 218 ND (1.0) ND (50.0)	ND (20.0) 2520 ND (6.0) ND (6.0) ND (200) ND (4.0) ND (5.0) 24.5 ND (50.0) 27.6 15000 83.2 ND (1.0) ND (50.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 75060 157 ND (50.0) 31.5 10000 528 17100 216 ND (1.0) ND (50.0)	9250 ND (6.0) ND (10.0) 254 ND (4.0) 5.0 42303 195 ND (50.0) 20,4 4728 98.8 15304 96.4 ND (1.0) ND (50.0)	
ICCPP ICCPA Identificates Analysis (EPA 8010) Juminum Intimony I	ugh	- 6 10 2000 4 5 - 100 4.68 1300 - 15 - 50 2	ND (20.0) 498 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 1206 ND (10.0) ND (50.0) ND (25.0) 1307 ND (70.0)	ND (20 0) 1550 ND (6.0) ND (10.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 35.11 35.7 ND (50.0) ND (25.0) 25.6 14.0 ND (1.0) ND (50.0) ND (50.0) ND (50.0) ND (50.0)	ND (20.0) 1250 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 1440 ND (50.0) 1440 ND (50.0) 1450 ND (1.0) ND (50.0) ND (50.0) ND (50.0) ND (50.0) ND (50.0)	ND (20.0) 7630 12.8 10.1 469 ND (4.0) 7.6 7560 139 ND (50.0) 85-5 1006 326 1233 ND (1.0) ND (50.0)	ND (20.0) 2100 ND (3.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 221 ND (5.0) 388 1500 680 ND (1.0) ND (50.0) ND (50.0)	7410 11.4 10.1 5441 ND (4.0) 8.2 1005 ND (50.0) 67.3 11106 263 47.00 218 ND (1.0) ND (50.0)	ND (20.0) 2520 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 33.0 4870 72.6 14500 83.2 ND (1.0) ND (50.0) ND (50.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 70001 157 ND (50.0) 528 17400 216 ND (1.0) ND (50.0) ND (50.0)	9250 ND (6.0) ND (10.0) 254 ND (4.0) 5.0 2203 195 ND (50.0) 20,6 4723 98.8 15,7 98.4 ND (1.0) ND (50.0)	
Interest of the second of the	Ngu	- 6 10 2000 4 5 - 100 4.68 1300 - 15 - 50 2	ND (20.0) 498 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) Alaboration ND (50.0) ND (25.0) 27.1 Alaboration ND (1.0) ND (50.0) ND (50.0) ND (50.0) ND (40.0) ND (50.0) ND (40.0) ND (40.0) ND (10000)	ND (20 0) 1550 ND (6.0) ND (10.0) ND (10.0) ND (5.0) 3520 ND (5.0) 3520 ND (5.0) ND (6.0) ND (7.0)	ND (20.0) 1850 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 1740 ND (50.0) 1740 105 ND (10.0) ND (10.0) ND (4.0) ND (50.0) ND (4.0) ND (50.0) ND (4.0) ND (4.0) ND (4.0) ND (40.0)	ND (20.0) 12.8 10.1 464 ND (4.0) 7.6 77501 139 ND (50.0) 66.5 12005 326 233 ND (1.0) ND (50.0)	ND (20.0) ND (3.0) ND (10.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 224 ND (50.0) 38.8 15000 66.0 ND (1.0) ND (50.0) ND (50.0) ND (50.0)	ND (20.0) 7.410 11.4 10.1 5.41 ND (4.0) 8.2 1005 ND (50.0) 67.3 1110 263 77.0 218 ND (1.0) ND (50.0) ND (50.0) ND (50.0) ND (50.0)	ND (20.0) 2520 ND (6.0) ND (70.0) ND (200) ND (5.0) 25509 44 ff ND (50.0) 272.6 14005 83.2 ND (1.0) ND (50.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 70045 157 ND (50.0) 41.5 216 ND (1.0) ND (50.0) ND (40.0) ND (50.0)	9250 ND (6.0) ND (10.0) 25.4 ND (4.0) 5.0 4200 195 ND (50.0) 4722 98.8 45234 96.4 ND (1.0) ND (50.0)	
ICPP ICPA Idea Sanalysis (EPA 5010) Idea San	Legh Legh Legh Legh Legh Legh Legh Legh	- 6 10 2000 4 5 - 100 4.68 1300 - 15 - 50 2	ND (20.0) 498 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 31206 ND (10.0) ND (50.0) ND (25.0) 27.1 18-20 ND (1.0) ND (50.0) ND (50.0) ND (40.0) ND (40.0) ND (40.0) ND (10.0) ND (10.0)	ND (20 0) 1550 ND (6.0) ND (10.0) ND (10.0) ND (5.0) 1550 ND (5.0) 1550 ND (5.0) 1550 ND (5.0) ND (1.0) ND (1.0) ND (10.0)	ND (20.0) ND (6.0) ND (6.0) ND (10.0) ND (200) ND (5.0) 17-601 20-2 ND (50.0) 42-2 88-72 98.1 105 ND (1.0) ND (50.0) ND (40.0) ND (40.0) ND (40.0) ND (40.0) ND (10000) ND (10.0)	ND (20.0) 7630 12.8 10.1 469 ND (4.0) 7.6 77300 139 ND (50.0) 65.2 12005 326 12005 326 12005 ND (10.0) ND (50.0)	ND (20.0) ND (20.0) ND (3.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 23.5 ND (5.0.0) 38.8 55.00 66.0 ND (1.0) ND (50.0) ND (50.0) ND (40.0) ND (40.0) ND (10.00)	ND (20.0) 7410 11.4 10.1 544 ND (4.0) 8.2 31000 105 ND (50.0) 63.3 11100 263 17300 218 ND (1.0) ND (50.0) ND (50.0) ND (50.0) ND (40.0) ND (40.0)	ND (20.0) ND (6.0) ND (6.0) ND (10.0) ND (200) ND (5.0) 34.6 ND (50.0) ND (10.0) ND (10000) ND (10000) ND (10.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 T0000 157 ND (50.0) 35.5 10300 528 77400 216 ND (1.0) ND (50.0) ND (40.0) ND (40.0) ND (10000) ND (10.0)	9350 ND (6.0) ND (10.0) 254 ND (4.0) 5.0 195 ND (50.0) 20.4 470 98.8 1534 96.4 ND (1.0) ND (50.0)	
ACCPP ACCPA Solutis Analysis (EPA 6010) Suminum Authorny Aussenic Sarium Seryllium Cadmium Cadmium Chromium Chopper Corn ead lagnesium Inanganese Infercury Inolybdenum Iickel Ioteleinium Ioteleini	Lugh Lugh Lugh Lugh Lugh Lugh Lugh Lugh	- 6 10 2000 4 5 - 100 4.68 1300 - 15 - 50 2 - 312 - 50 77.9	ND (20.0) 498 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 1207 ND (50.0) ND (25.0) 27.1 18-20 ND (1.0) ND (50.0) ND (50.0) ND (50.0) ND (40.0) ND (50.0) ND (40.0) ND (40.0) ND (10000)	ND (20 0) 1550 ND (6.0) ND (10.0) ND (10.0) ND (5.0) 3520 ND (5.0) 3520 ND (5.0) ND (6.0) ND (7.0)	ND (20.0) 1850 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 1740 ND (50.0) 1740 105 ND (10.0) ND (10.0) ND (4.0) ND (50.0) ND (4.0) ND (50.0) ND (4.0) ND (4.0) ND (4.0) ND (40.0)	ND (20.0) 12.8 10.1 464 ND (4.0) 7.6 77501 139 ND (50.0) 66.5 12005 326 233 ND (1.0) ND (50.0)	ND (20.0) 2700 ND (8.0) ND (8.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 22.5 ND (5.0) 38.8 1500 66.0 ND (1.0) ND (5.0) ND (40.0) ND (40.0) ND (10.0) ND (10.0) ND (10.0)	7,410 11.4 10.1 1541 ND (4.0) 8.2 11000 105 ND (50.0) 80.2 11100 263 17200 218 ND (1.0) ND (50.0) ND (40.0) 105 ND (50.0) ND (40.0) 105 ND (40.0) 105 ND (10.0) ND (10.0) ND (10.0)	ND (20.0) ND (6.0) ND (6.0) ND (10.0) ND (200) ND (5.0) 3.46 ND (50.0) 3.76 4.87 72.6 15000 83.2 ND (1.0) ND (50.0) ND (40.0) ND (40.0) ND (40.0) ND (40.0) ND (10000) ND (10.0) ND (10.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 75000 157 ND (50.0) 31.5 10300 528 77100 216 ND (1.0) ND (50.0) ND (40.0) ND (40.0) ND (40.0) ND (10000) ND (10.0) ND (10.0)	9350 ND (6.0) ND (10.0) 254 ND (4.0) 5.0 4353 195 ND (50.0) 26,4 4728 98.8 4534 96.4 ND (1.0) ND (50.0) ND (10.0) ND (10.0)	
ICCPP ICCPA Status Analysis (EPA 5010) duminum untimony ursenic sarium iseryllium admium salcium hrromium icobalt copper on ead lagnesium langanese lercury lolybdenum licikel otassium elenium ither odium	Light	- 6 10 2000 4 5 - 100 4.68 1300 - 15 - 50 2 - 312 - 50 77.9	ND (20.0) 498 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 1206 ND (50.0) ND (25.0) 1307 ND (10.0) ND (50.0) ND (50.0) ND (50.0) ND (50.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	ND (20.0) 1550 ND (6.0) ND (10.0) ND (10.0) ND (5.0) 1550 ND (5.0) 1550 ND (5.0) 1550 ND (5.0) ND (1.0) ND (1.0) ND (10.0)	ND (20.0) ND (6.0) ND (6.0) ND (10.0) ND (200) ND (5.0) 17-601 20-2 ND (50.0) 42-2 88-72 98.1 105 ND (1.0) ND (50.0) ND (40.0) ND (40.0) ND (40.0) ND (40.0) ND (10000) ND (10.0)	ND (20.0) 7630 12.8 10.1 469 ND (4.0) 7.6 7500 139 ND (50.0) 85-5 1000 326 1000 233 ND (1.0) ND (50.0) 45-7 1000 1000 ND (10.0) ND (10.0) ND (10.0)	ND (20.0) ND (20.0) ND (3.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 23.5 ND (5.0.0) 38.8 55.00 66.0 ND (1.0) ND (50.0) ND (50.0) ND (40.0) ND (40.0) ND (10.00)	ND (20.0) 7410 11.4 10.1 544 ND (4.0) 8.2 31000 105 ND (50.0) 63.3 11100 263 17300 218 ND (1.0) ND (50.0) ND (50.0) ND (50.0) ND (40.0) ND (40.0)	ND (20.0) 2520 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 33.0 470 72.6 16000 83.2 ND (1.0) ND (50.0) ND (50.0) ND (50.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 70000 157 ND (50.0) 51.5 10300 528 17100 216 ND (1.0) ND (50.0) ND (50.0) ND (40.0) ND (1000) ND (1000) ND (1000) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	9250 ND (6.0) ND (10.0) 254 ND (4.0) 5.0 2303 195 ND (50.0) 20,6 4722 98.8 1522 98.8 1522 ND (10000) ND (10000) ND (10.0) ND (10.0)	
ICCPP ICCPA Solution Analysis (EPA 5010) Suminum Inthimony Interest in the Interest in the Interest in Interest	Agu	- 6 10 2000 4 5 - 100 4,68 1300 - 15 - 50 2 312 50 77.9	ND (20.0) A96 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) A1206 ND (50.0)	ND (20.0) 1550 ND (6.0) ND (10.0) ND (10.0) ND (4.0) ND (5.0) 3550 34.0 ND (50.0) ND (50.0) 155.6 ND (10.0) ND (50.0) ND (40.0) ND (10.0) ND (10.0) ND (10.0)	ND (20.0) 1300 ND (6.0) ND (6.0) ND (200) ND (40.0) ND (50.0) 17-401 20-2 ND (50.0) 105 ND (1.0) ND (50.0) ND (10.0) ND (40.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	ND (20.0) 7650 12.8 10.1 464 ND (4.0) 7.6 77500 139 ND (50.0) 56.1 1205 326 1205 326 1205 326 1205 327 ND (1.0) ND (50.0) ND (10.0) ND (10.0)	ND (20.0) 2700. ND (8.0) ND (10.0) ND (10.0) ND (200) ND (4.0) ND (50.0) 2721 273 38.8 45555 68.0 ND (10.0) ND (50.0) ND (50.0) ND (50.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	ND (20.0) 74 10 11.4 10.1 544 ND (4.0) 8.2 105 ND (50.0) 67.3 119.0 263 77.0 218 ND (1.0) ND (50.0) ND (50.0) ND (50.0) ND (40.0) 12.55 ND (10.0) ND (10.0)	ND (20.0) 2520 ND (6.0) ND (6.0) ND (10.0) ND (200) ND (5.0) 2550 34 6 ND (5.0) 2540 37.6 3870 72.6 1500 83.2 ND (10.0) ND (50.0) ND (40.0) ND (40.0) ND (10000) ND (10.0) ND (10.0) ND (10.0) 100000	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 70065 157 ND (50.0) 45.5 40,500 528 77400 216 ND (1.0) ND (50.0) ND (40.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	9250 ND (6.0) ND (10.0) 25.4 ND (4.0) 5.0 4200 195 ND (50.0) 20,6 4722 98.8 15306 96.4 ND (1.0) ND (50.0) 10000 ND (10.0) ND (10.0) ND (10.0)	
MCPP MCPA Motals Analysis (EPA 6010) Muminum Multimony Virsenic Parium Padmium Cadmium Chromium Cobalt Copper Con ead lagnesium Ianganese Iercury Iolybdenum Icickel Ici	Agu	- 6 10 2000 4 5 - 100 4.68 1300 - 15 - 50 2 - 312 - 50 77.9	ND (20.0) 496 ND (6.0) ND (10.0) ND (200) ND (200) ND (4.0) ND (5.0) ND (5.0)	ND (20 0) 1550 ND (6.0) ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 1550 155.5 1500 ND (5.0)	ND (20.0) ND (6.0) ND (6.0) ND (10.0) ND (200) ND (4.0) ND (50.0) 32-3 48-70 98.1 167-70 ND (50.0) ND (40.0) ND (40.0) ND (40.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	ND (20.0) 12.8 12.8 10.1 469 ND (4.0) 7.6 7.76 7.79 139 ND (50.0) 8.5 12005 326 12005 326 12005 ND (10.0) ND (50.0) ND (10.0) ND (10.0) ND (10.0)	ND (20.0) 2100 ND (8.0) ND (8.0) ND (10.0) ND (200) ND (4.0) ND (5.0) ND (5.0) 38.8 1500 66.0 ND (1.0) ND (50.0) ND (40.0) ND (40.0) ND (10.0)	ND (20.0) 7,810 11.4 10.1 5441 ND (4.0) 8.2 11000 105 ND (50.0) 602 11100 263 17200 218 ND (1.0) ND (50.0) ND (50.0) ND (40.0) 105 ND (10.0) ND (10.0) ND (10.0)	ND (20.0) ND (6.0) ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 34.5 ND (50.0) 34.5 ND (50.0) 35.0 36.0 37.0 15000 83.2 ND (1.0) ND (50.0) ND (10.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 70000 157 ND (50.0) 31.5 10000 528 77100 216 ND (10.0) ND (50.0) ND (40.0) ND (40.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	9350 ND (6.0) ND (10.0) 254 ND (4.0) 5.0 4353 195 ND (50.0) 264 4768 98.8 15368 96.4 ND (1.0) ND (50.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	
ICCPP ICCPA	ugh	- 6 10 2000 4 5 - 100 4.68 1300 - 15 - 2 - 312 - 50 77.9	ND (20.0) A96 ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) A1206 ND (50.0)	ND (20.0) 1550 ND (6.0) ND (10.0) ND (10.0) ND (4.0) ND (5.0) 3550 34.0 ND (50.0) ND (50.0) 155.6 ND (10.0) ND (50.0) ND (40.0) ND (10.0) ND (10.0) ND (10.0)	ND (20.0) 1300 ND (6.0) ND (6.0) ND (10.0) ND (200) ND (4.0) ND (50.0) 17401 20-2 ND (50.0) 105 ND (1.0) ND (50.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	ND (20.0) 7650 12.8 10.1 464 ND (4.0) 7.6 77500 139 ND (50.0) 56.1 1205 326 1205 326 1205 326 1205 327 ND (1.0) ND (50.0) ND (10.0) ND (10.0)	ND (20.0) ND (3.0) ND (3.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 38.8 150.5 66.0 ND (50.0) ND (50.0) ND (50.0) ND (10.0) ND (10.0)	ND (20.0) 74 10 11.4 10.1 544 ND (4.0) 8.2 105 ND (50.0) 67.3 119.0 263 77.0 218 ND (1.0) ND (50.0) ND (50.0) ND (50.0) ND (40.0) 12.55 ND (10.0) ND (10.0)	ND (20.0) 2520 ND (6.0) ND (6.0) ND (10.0) ND (200) ND (4.0) ND (50.0) 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 26.0 27.0 15.0 ND (50.0) ND (50.0) ND (10.0) ND (50.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 70065 157 ND (50.0) 45.5 40,500 528 77400 216 ND (1.0) ND (50.0) ND (40.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	9250 ND (6.0) ND (10.0) 25.4 ND (4.0) 5.0 4200 195 ND (50.0) 20,6 4722 98.8 15306 96.4 ND (1.0) ND (50.0) 10000 ND (10.0) ND (10.0) ND (10.0)	
ICCPP ICCPA South Analysis (EPA 5010) Suminum Indimony India Ind	Agu	- 6 10 2000 4 5 - 100 4.68 1300 - 15 - 50 2 - 312 - 50 77.9	ND (20.0) 496 ND (6.0) ND (10.0) ND (200) ND (200) ND (4.0) ND (5.0) ND (5.0)	ND (20 0) 1550 ND (6.0) ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 1550 155.5 1500 ND (5.0)	ND (20.0) ND (6.0) ND (6.0) ND (10.0) ND (200) ND (4.0) ND (50.0) 32-3 48-70 98.1 167-70 ND (50.0) ND (40.0) ND (40.0) ND (40.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	ND (20.0) 12.8 12.8 10.1 469 ND (4.0) 7.6 7.76 7.79 139 ND (50.0) 8.5 12005 326 12005 326 12005 ND (10.0) ND (50.0) ND (10.0) ND (10.0) ND (10.0)	ND (20.0) 2100 ND (8.0) ND (8.0) ND (10.0) ND (200) ND (4.0) ND (5.0) ND (5.0) 38.8 1500 66.0 ND (1.0) ND (50.0) ND (40.0) ND (40.0) ND (10.0)	ND (20.0) 7,810 11.4 10.1 5441 ND (4.0) 8.2 11000 105 ND (50.0) 602 11100 263 17200 218 ND (1.0) ND (50.0) ND (50.0) ND (40.0) 105 ND (10.0) ND (10.0) ND (10.0)	ND (20.0) ND (6.0) ND (6.0) ND (10.0) ND (200) ND (4.0) ND (5.0) 34.5 ND (50.0) 34.5 ND (50.0) 35.0 36.0 37.0 15000 83.2 ND (1.0) ND (50.0) ND (10.0)	5910 ND (6.0) ND (10.0) 444 ND (4.0) 6.9 70000 157 ND (50.0) 31.5 10000 528 77100 216 ND (10.0) ND (50.0) ND (40.0) ND (40.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	9350 ND (6.0) ND (10.0) 254 ND (4.0) 5.0 4353 195 ND (50.0) 264 4768 98.8 15368 96.4 ND (1.0) ND (50.0) ND (10.0) ND (10.0) ND (10.0) ND (10.0)	

Footnotes:

CW = Sample collected from Ceilings and Walls F = Sample collected from Floor

Job Number:	60180084				
Account:	ISI Envir	onmental Services	***************************************		
Project:	Clean Ha	arbors; Wichita, KS			
Project Number:					
Legen	d:	Detection	Exceed		
Client Sample ID:		KS Tier 2 Risk Based Standards	Bld C Bay 5-8		
Lab Sample ID:		Residential GW	60182837009		
Date Sampled:		(KDHE 03/2014)	11/18/2014		
Matrix:			Water		
DIOXIN / FURANS RE	SULTS				
2378-TCDF	pg/L		40		
12378-PeCDF	pg/L	-	95* P		
23478-PeCDF	pg/L	4	ND(50)		
123478-HxCDF	pg/L		51 J		

4930000

30

-

-

-

ND(50)

ND(50)

ND(50)

190° I

ND(50)

660

ND(10)

ND(50)

ND(50)

ND(50)

52 J

810

8100

Notes: (") Reporting Limit in Parenthesis

pg/L

P = PCDE Interference

123678-HxCDF

234678-HxCDF

123789-HxCDF

1234678-HpCDF

1234789-HpCDF

OCDF

OCDD

2378-TCDD

12378-PeCDD

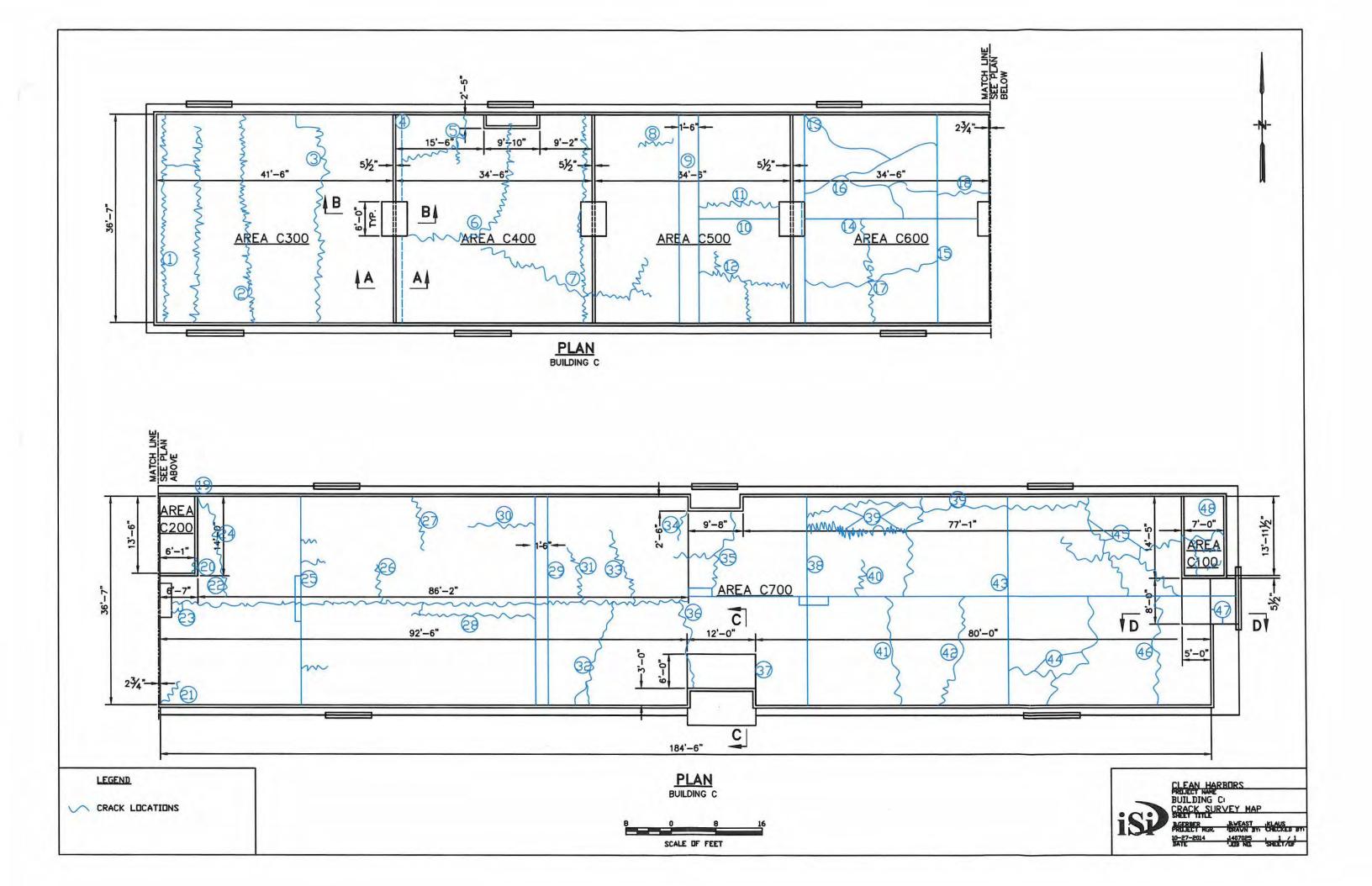
123478-HxCDD

123678-HxCDD

123789HxCDD

1234678-HpCDD

I = Interference Present


J = Estimated Value

^{* =} Estimated Maximum Possible Concentration

ATTACHMENT 2: Crack Survey of Building C

Including:

- -Crack Survey Figure
- -Crack Survey Description Table
- -Orientated Color Photo Log of Crack

Clean Harbors Crack Survey Building C

Room/Bay	Crack ID	Description			
Bay 1 1		1/8" wide crack, Partially sealed with silicone with branch to east with second branch north/south 1/16" hairline crack ("H") shaped). Boring completed through portion of crack.			
Bay 1	2	1/8" wide crack – sealed with epoxy and silicone sealant.			
Bay 1	3	Unknown crack width – sealed with ½" to 1' wide silicone bead.			
Bay 2	4	Slab joint, sealed with silicone bead with fiberglass patch over North ½ of crack.			
Bay 2	5	1/16" wide crack, multiple branches.			
Bay 2	6	1/16" wide crack, silicone sealed with parts covered with fiberglass patch.			
Bay 2	7	1/2" wide ground out and silicone sealed crack with fiberglass patch in places.			
Bay 3	8	Unknown width, small crack, fiberglass covered.			
Bay 3	9	Double slab joints – utility trench- sealed with silicone.			
Bay 3	10	Center slab joint (East-West), sealed.			
Bay 3	11	1" wide crack, ground out and silicone sealed.			
Bay 3	12	Unknown crack width, fiberglass patched with 2 branches.			
Bay 4	13	Slab joint – utility trench –sealed with topcoat in places.			
Bay 4	14	East-West center slab joint, 1" to 1 1/2" wide, silicone sealed.			
Bay 4	15	North to South slab joint, 1 ½" wide sealed with silicone.			
Bay 4	16	Multi-Branch cracks, ground out to ½" wide, sealed with silicone.			
Bay 4	17	Multi-Branch cracks, ground out to ½" wide, sealed with silicone.			
Bay 4	18	Crack, unknown width, fiberglass patched.			
Bay 5	19	Edge joint around building secondary containment, sealed.			
Bay 5	20	Crack in side of secondary containment berm, approximately 1/8" to %" in width and 1' in length.			
Bay 5	21	Crack-1 ½" wide, ground out and silicone filled.			
Bay 5	22	Slab joint – 1 ½" wide, ground out and silicone filled.			
Bay 5	23	Crack – approximately 3' long and ½" wide – ground out and silicon filled.			
Bay 5	24	Crack – 1" wide, ground out and silicone filled.			
Bay 5	25	Slab joint – 1 ½" wide, ground out and silicone sealed, rectangular box near middle of building, with small cracks off of slab joint that are filled.			
Bay 5	26	Crack – 1" wide, ground out and silicone filled.			
Bay 5	27	Crack – 1" wide, ground out and silicone filled.			
Bay 6	28	Branched crack – 1" wide, ground out and silicone filled.			
Bay 6	29	Two slab joints – 1" wide, ground out and silicone filled.			
Bay 6	30	Crack – 1" wide, ground out and silicone filled.			
Bay 6	31	Crack – 1" wide, ground out and silicone filled.			
Bay 6	32	Crack – 1 1/2" wide, ground out and silicone filled.			
Bay 6	33	Crack – 1" wide, ground out and silicone filled.			
Bay 6	34	Crack – 1" wide, ground out and silicone filled.			
Bay 6/7	35	Crack - 1" wide, and 3' x 1' rectangle - ground out and silicone filled			

Clean Harbors Crack Survey Building C

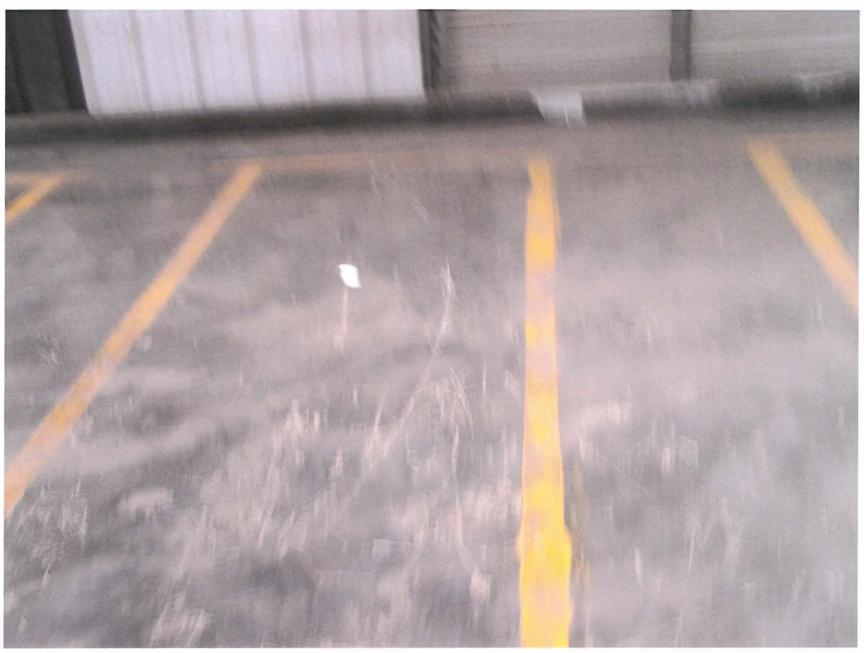
Room/Bay	Crack ID	Description
Bay 6/7	36	Crack − 1 ½" wide, ground out and silicone filled.
Bay 7	37	Joint around forklift ramp – silicone filled.
Bay 7	38	Slab joint with rectangular box -1 " wide $-$ ground out and silicone filled.
Bay 7/8	39	Long branching crack -1 " to 1% " wide- ground out and silicone filled.
Bay 7	40	Crack – approximately 6' long – 1" wide – ground out and silicone filled.
Bay 7	41	Crack – 1 ½" wide – ground out and silicone filled.
Bay 7/8	42	Crack – 1 ½" wide – ground out and silicone filled.
Bay 8	43	Slab joint – 1" wide – ground out and silicone filled.
Bay 8	44	Branched crack – 1" wide – ground out and silicone filled.
Bay 8	45	Branched crack - 1" to 1 1/2" wide - ground out and silicone filled.
Bay 8	46	Crack – 1" wide, ground out and silicone filled.
Bay 8	47	Slab joints around forklift ramp – 1" wide, ground out and silicone filled.
Bay 8	48	Crack inside containment area – 1" wide, ground out and silicone filled.

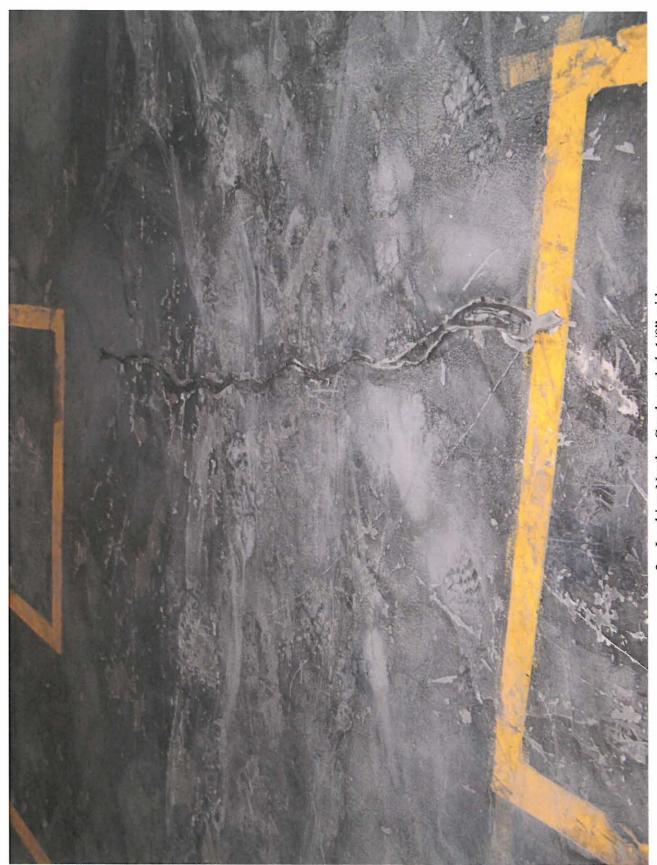
Date: 10-21-14 and 11-10-14

Crack Survey Completed and Photographed by: Stuart B. Klaus, P.E., and Brady Gerber

Camera: Sony Cybershot Camera

1. Looking West. Crack-partially sealed with silicone, with branch to east and second 1/16" branch (north-south).


1. Looking North. Crack-partially sealed with silicone, with branch to east and second 1/16" branch (north-south).


1. Looking North. Crack-partially sealed with silicone, with branch to east and second 1/16" branch (north-south).

1. Looking North. Crack-partially sealed with silicone, with branch to east and second 1/16" branch (north-south).

1. Looking South. Crack-partially sealed with silicone, with branch to east and second 1/16" branch (north-south).

2. Looking North. Crack-sealed, 1/8" wide.

2. Looking South. Crack-sealed, 1/8" wide.

3. Looking North. Unknown crack width, sealed with 1/2" to1" wide silicone bead.

3. Looking South. Unknown crack width, sealed with 1/2" to1" wide silicone bead.

4. Looking South. Slab joint, sealed with silicone bead.

4. Looking North. Slab joint, sealed with silicone bead with fiberglass patch over North ½ of crack.

4. Looking North. Slab joint, sealed with silicone bead with fiberglass patch over North $\frac{1}{2}$ of crack.

5. Looking East. 1/16" wide crack with multiple branches, fiberglass coated.

5. Looking North. 1/16" wide crack with multiple branches, fiberglass coated.

5. Looking Northeast. 1/16" wide crack with multiple branches, fiberglass coated.

6. Looking Northwest. 1/16" wide crack, silicone sealed with parts covered with fiberglass patch.

6. Looking Northeast. 1/16" wide crack, silicone sealed with parts covered with fiberglass patch.

6. Looking North. 1/16" wide crack, silicone sealed with parts covered with fiberglass patch.

7. Looking Southeast. ½" wide ground out and silicone sealed crack with fiberglass patch in places.

7. Looking Southeast. ½" wide ground out and silicone sealed crack with fiberglass patch in places.

7. Looking North. ½" wide ground out and silicone sealed crack with fiberglass patch in places.

7. Looking North. ½" wide ground out and silicone sealed crack with fiberglass patch in places.

8. Looking North. Unknown width, small crack, fiberglass covered.

9. Looking South. Double slab joints - utility trench - sealed with silicone.

9. Looking North. Double slab joints – utility trench – sealed with silicone.

10. Looking East. Center slab joint (East-West), sealed. 11. 1" wide crack, ground out and silicone sealed.

12. Looking East. Unknown crack width, fiberglass patched with 2 branches.

12. Looking North. Unknown crack width, fiberglass patched with 2 branches.

12. Looking South. Unknown crack width, fiberglass patched with 2 branches.

12. Looking South. Unknown crack width, fiberglass patched with 2 branches.

13. Looking North. Slab joint – utility trench – sealed with topcoat in places.

13. Looking South. Slab joint – utility trench – sealed with topcoat in places.

14. Looking East. East-West center slab joint, 1" to 1 ½" wide silicone sealed.

15. Looking South. North-South slab joint, 1 1/2" wide sealed with silicone.

15. Looking North. North-South slab joint, 1 1/2" wide sealed with silicone.

16. Looking East. Multi-branch cracks, ground out to ½" wide, sealed with silicone.

16. Looking Northeast. Multi-branch cracks, ground out to ½" wide, sealed with silicone.

16. Looking Southeast. Multi-branch cracks, ground out to $\frac{1}{2}$ " wide, sealed with silicone.

16. Looking South-Southeast. Multi-branch cracks, ground out to $\frac{1}{2}$ " wide, sealed with silicone.

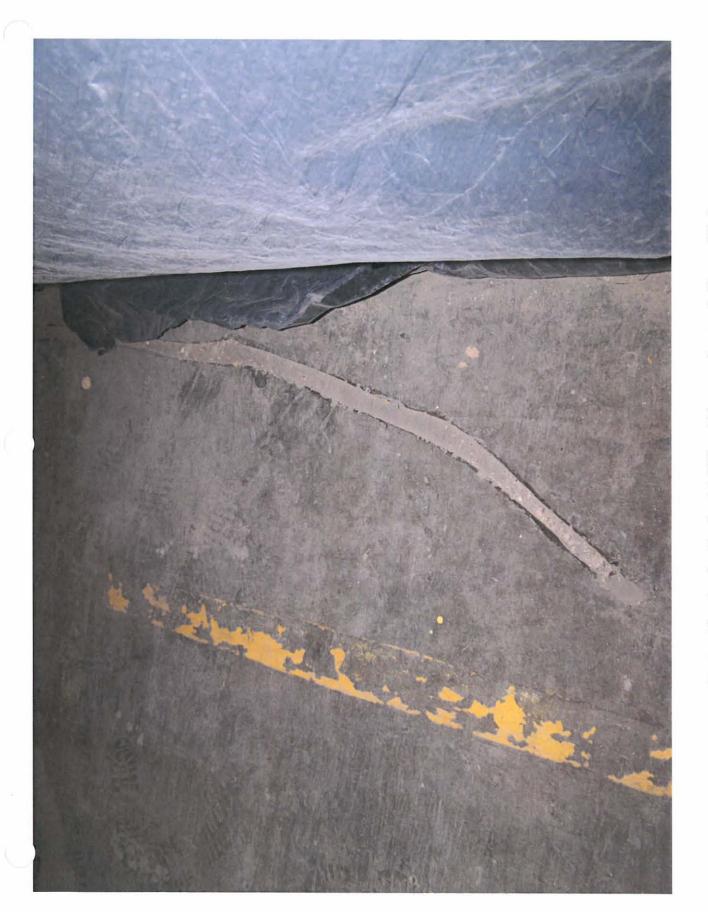
17. Looking East. Multi-branch cracks, ground out to ½" wide, sealed with silicone.

17. Looking South. Multi-branch cracks, ground out to ½" wide, sealed with silicone.

17. Looking East. Multi-branch cracks, ground out to ½" wide, sealed with silicone.

17. Looking East. Multi-branch cracks, ground out to ½" wide, sealed with silicone.

18. Looking East. Crack, unknown width, fiberglass patched.


19. Looking West. Edge joint around building secondary containment – sealed.

19. Looking North. Edge joint around building secondary containment – sealed.

20. Looking West. Crack in side of secondary containment berm approximately 1/8" to 1/4" in width and 1' in length.

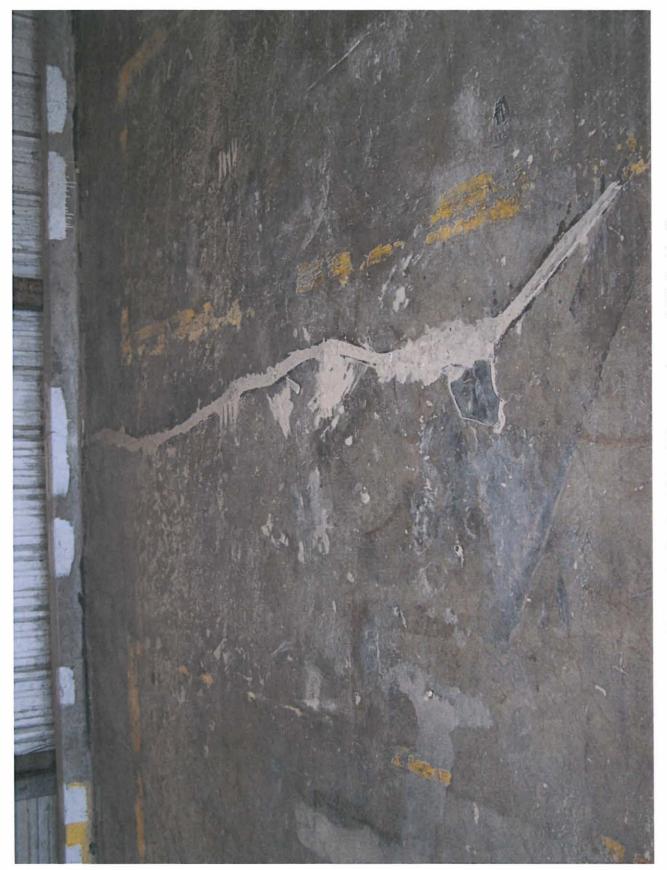
21. Looking South. Crack - 1 1/2" in width-ground out and silicone filled.

22. Looking East. Slab joint $-1 \frac{1}{2}$ " wide - ground out and silicone filled.

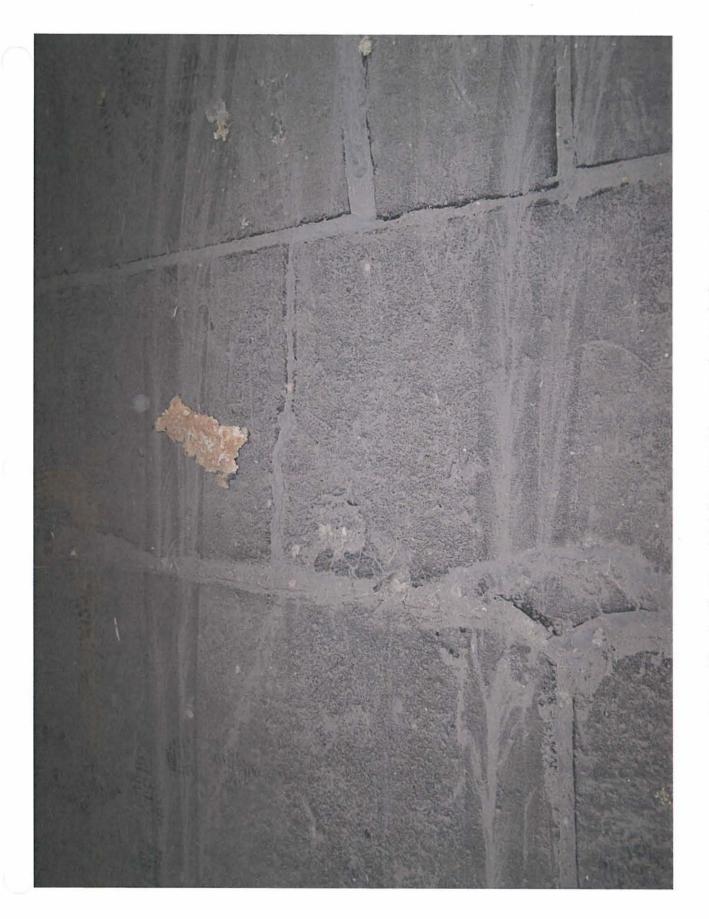
23. Looking East. Crack – approximately 3' long and $\frac{1}{2}$ " wide – ground out and silicone filled.

24. Looking North. Crack-1" in width – ground out and silicone filled.

25. Looking South. Slab joint $-1\frac{1}{2}$ " wide - ground out and silicone sealed, with small spur crack that is also filled.


25. Looking North. Slab joint $-1\frac{1}{2}$ " wide - ground out and silicone sealed with rectangular box near middle of building.

25. Looking North. Slab joint $-1\frac{1}{2}$ " wide - ground out and silicone sealed with cracks coming off of slab joint.


26. Looking North. Crack – 1" in width – ground out and filled with silicone.

27. Looking North. Crack – 1" in width – ground out and filled with silicone.

28. Looking East. Branched crack-1" in width – ground out and filled with silicone.

29. Looking South. Two slab joints – 1" wide – ground out and silicone sealed.

29. Looking North. Two slab joints – 1" wide – ground out and silicone sealed.

29. Looking North. Two slab joints – 1" wide – ground out and silicone sealed.

30. Looking West. Crack- 1" wide – ground out and silicone sealed.

31. Looking North. Crack- 1" wide - ground out and silicone sealed.

32. Looking South. Crack- 1 1/2" wide – ground out and silicone sealed.

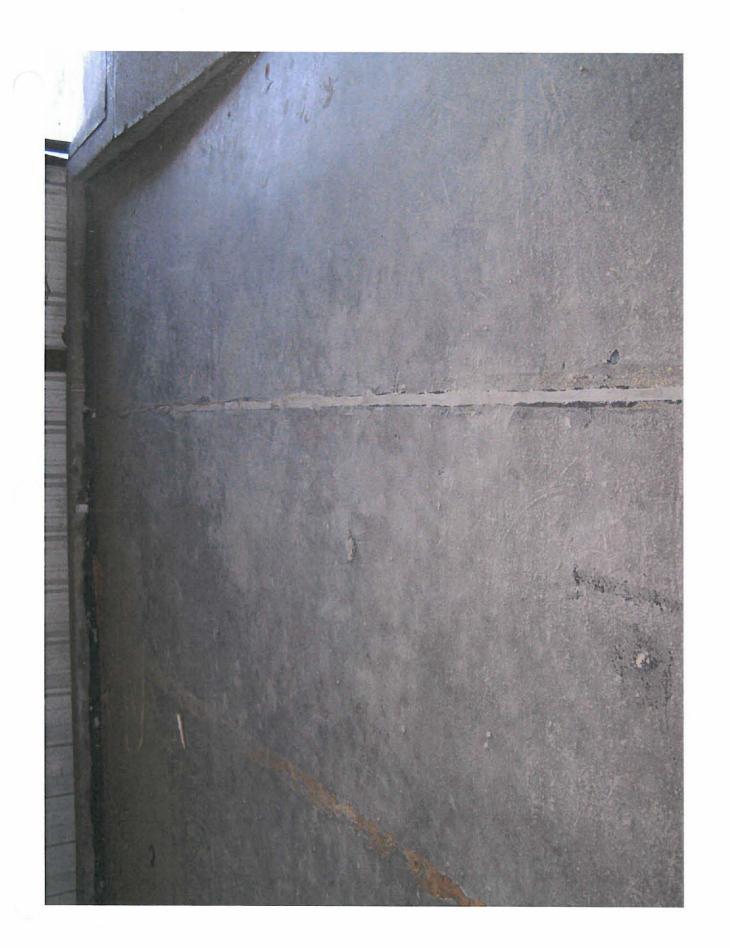
33. Looking North. Crack- 1" wide - ground out and silicone sealed.

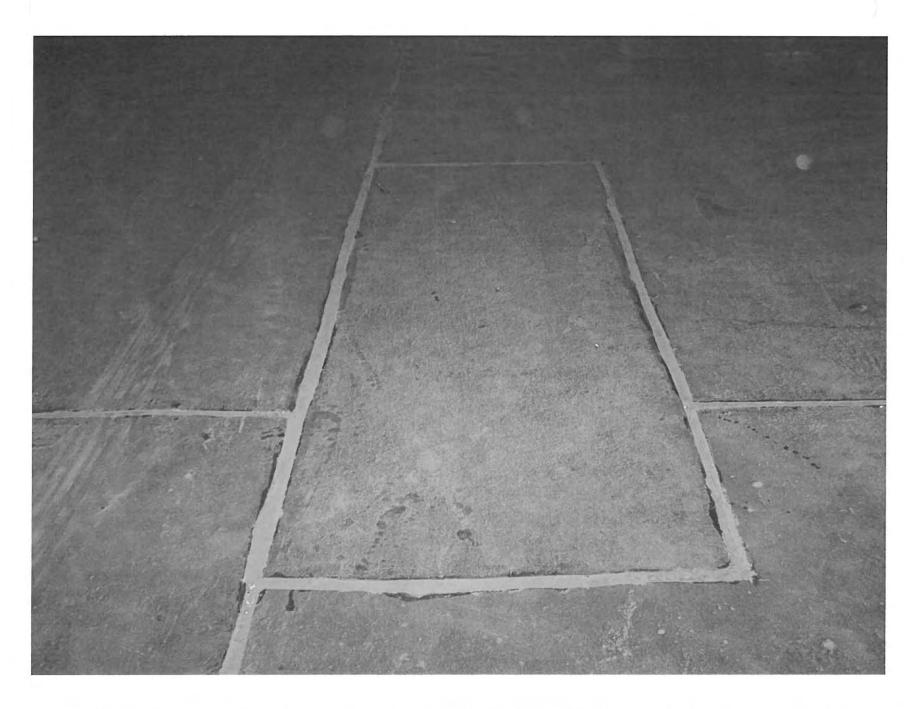
34. Looking North. Crack- 1" wide – ground out and silicone sealed.

35. Looking North. Crack- 1" wide – and 3' X 1' rectangle - ground out and silicone sealed.

35. Looking North. Crack - 1" wide – ground out and silicone sealed.

35. Looking West. Crack – 1" wide – ground out and silicone sealed.


36. Looking South. Crack – 1 1/2" wide – ground out and silicone sealed.


37. Looking East. Joint around forklift ramp - silicone sealed.

38. Looking North. Slab joint – 1" wide – ground out and silicone sealed.

38. Looking South. Slab joint – 1" wide – ground out and silicone sealed.

 $38. \ \ Looking\ East.\ \ Slab\ joint\ with\ rectangular\ box\ near\ middle\ of\ building-1"\ wide-ground\ out\ and\ silicone\ sealed.$

39. Looking East. Long branching crack 1 to $1\frac{1}{2}$ " wide - ground out and silicone sealed.

39. Looking South. Long branching crack 1 to $1\frac{1}{2}$ " wide - ground out and silicone sealed.

39. Looking Northwest. Long branching crack 1 to $1\frac{1}{2}$ " wide - ground out and silicone sealed.


39. Looking East. Long branching crack 1 to $1\frac{1}{2}$ " wide - ground out and silicone sealed.

40. Looking South. Approximately 6' long crack -1'' wide - ground out and silicone sealed.


41. Looking South. $Crack - 1 \frac{1}{2}$ wide – ground out and silicone sealed.

42. Looking South. Crack – 1 1/2" wide – ground out and silicone sealed.

43. Looking North. Slab joint – 1" wide – ground out and silicone sealed.

43. Looking South. Slab joint – 1" wide – ground out and silicone sealed.

44. Looking North. Branched crack – 1" wide – ground out and silicone sealed.

44. Looking West. Branched crack - 1" wide – ground out and silicone sealed.

45. Looking Southeast. Branched crack – 1 to 1 $\frac{1}{2}$ " wide – ground out and silicone sealed.

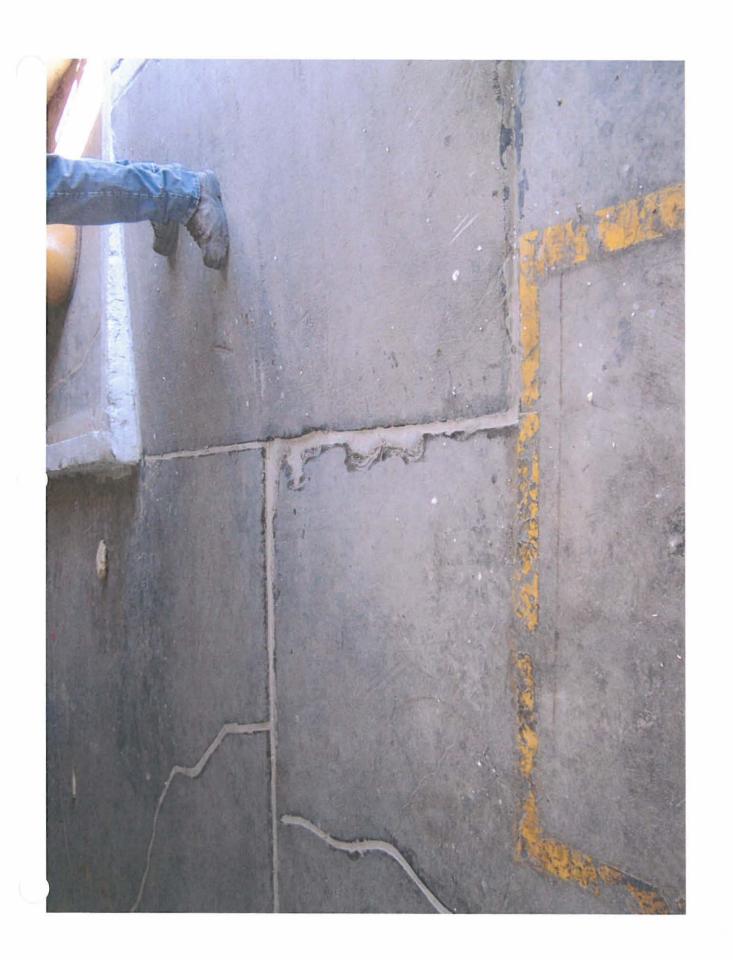
45. Looking East. Branched crack -1 to $1\frac{1}{2}$ wide - ground out and silicone sealed.

45. Looking Southeast. Branched crack -1 to $1\frac{1}{2}$ wide - ground out and silicone sealed.

45. Looking Southeast. Branched crack -1 to $1\frac{1}{2}$ wide - ground out and silicone sealed.


45. Looking East. Branched crack -1 to $1\frac{1}{2}$ " wide - ground out and silicone sealed.

45. Looking North. Branched crack – 1 to 1 $\frac{1}{2}$ " wide – ground out and silicone sealed.


45. Looking Northwest. Branched crack -1 to $1\frac{1}{2}$ wide - ground out and silicone sealed.

46. Looking South. Crack – 1" wide – ground out and silicone sealed.

46. Looking South. Crack - 1" wide – ground out and silicone sealed.

47. Looking North. Slab joints around forklift ramp - 1" wide - ground out and sealed.

48. Looking North. Crack inside containment area -1" wide - ground out and sealed.